Deltoid Ligament Reconstruction: A Novel Technique with Biomechanical Analysis

Author:

Haddad Steven L.1,Dedhia Sunil1,Ren Yupeng1,Rotstein Jason1,Zhang Li-Qun1

Affiliation:

1. Glenview, IL

Abstract

Background: Deltoid ligament insufficiency has been shown to decrease tibiotalar contact area and increase peak pressures within the lateral ankle mortise. This detrimental effect may create an arthritic ankle joint if left unresolved. Reconstructive efforts thus far have been less than satisfactory. We describe a novel technique that reconstructs both main limbs of the deltoid ligament in anatomic orientation while providing secure graft fixation. Materials and Methods: Six pairs of fresh frozen cadaveric lower extremities were utilized. Matched right and left lower limbs (one pair) were allocated either to a deltoid reconstruction group or an intact deltoid group. The anterior tibial tendon was chosen as the graft for ligament reconstruction, and was harvested from the ipsilateral specimen. Tunnels were created in the distal tibia at the deltoid origin, and at the talus (deep) and calcaneus (superficial) deltoid insertions. Following measurement, the graft was cut to the appropriate size and endobuttons weaved into both tendon ends. The graft ends were passed through the talus and calcaneus respectively. The residual graft loop was then routed through the tibial tunnel and secured proximally with a cancellous screw post and spiked washer. Following specimen mounting, a multiaxis testing apparatus with three separate motors allowed three planes (dorsiflexion/plantarflexion; inversion/eversion; and internal/external rotation) of motion. Angular rotations and linear translations of the tibia in the X-Y-Z directions were measured for a given torque in external/internal rotation, dorsiflexion/plantarflexion, or eversion/inversion, under a constant velocity of 2 degrees per second. Testing consisted of a 2 Nm preload for 20 cycles in internal rotation/external rotation and inversion/eversion prior to data collection of 10 cycles at this level of torque. Similarly, a preload of 1 Nm for 20 cycles was used in dorsiflexion/plantarflexion prior to data collection of 10 cycles at this torque level. Data were collected in the control specimens (the matched contralateral extremity) with the deltoid ligament intact, and following complete sectioning of the ligament complex (both bundles). Results: Angular displacement at a 2 Nm level torque was significantly greater in the sectioned group compared to the deltoid reconstruction group in external rotation and eversion ( p = 0.006 and p = 0.017 respectively). There was no statistical difference in angular displacement between the deltoid intact and reconstructed group in external rotation and eversion when tested at 2 Nm of torque ( p = 0.865 and p = 0.470, respectively). The stiffness of the reconstruction was 136.4 ± 40.2% compared to the intact ligament. Stiffness data were statistically insignificant in both plantar flexion and dorsiflexion between the reconstructed and sectioned groups ( p = 0.050 and p = 0.126). Conclusion: The described reconstruction technique under low torque was able to restore eversion and external rotation stability to the talus, which was statistically similar to the intact deltoid ligament. This novel technique developed its strength not only from the anatomic orientation of the reconstructed ligament, but the strength of the components chosen to fix the tendon graft to the bone. Clinical Relevance: This utilitarian reconstruction may be incorporated into total ankle arthroplasty, triple arthrodesis, and sports injuries to re-establish lost medial stability.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3