The Investigation of Epoch Parameters in ResNet-50 Architecture for Pornographic Classification

Author:

Faiz Nashrullah ,Suryo Adhi Wibowo ,Gelar Budiman

Abstract

Kemajuan teknologi informasi yang cepat dan tak terkontrol membuat berbagai konten negatif seperti pornografi dapat dengan mudah diakses. Konten pornografi terbukti dapat menyebabkan berbagai permasalahan terutama pada generasi muda. Beberapa pengembangan metode untuk pendeteksian pornografi telah dilakukan namun masih terkendala pada keterbatasan karakteristik data masukan. Pada penelitian kali ini dikembangkan sistem pendeteksi konten pornografi berbasis klasifikasi menggunakan Convolutional Neural Network (CNN) dengan arsitektur ResNet-50 untuk mengatasi permasalahan sebelumnya. Dalam proses perancangan model sistem, diterapkan berbagai konfigurasi epoch dan didapatkan bahwa performa dari sistem memiliki kecenderungan untuk meningkat seiring dengan pertambahan epoch. Performa terbaik diraih oleh sistem pada konfigurasi epoch 60 dengan akurasi 91,033%.

Publisher

Institut Teknologi Telkom Surabaya

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Deep Learning Using Convolutional Neural Network Model;Engineering Headway;2024-03-05

2. KLASIFIKASI TIGA GENUS IKAN KARANG MENGGUNAKAN CONVOLUTION NEURAL NETWORK;Jurnal Ilmu dan Teknologi Kelautan Tropis;2022-08-30

3. CLASSIFICATION OF THREE GENERA OF CORAL FISH USING CONVOLUTIONAL NEURAL NETWORK;J ILMU TEKNOL KELAUT;2022

4. Deep Learning in Image Classification using VGG-19 and Residual Networks for Cataract Detection;2022 2nd International Conference on Information Technology and Education (ICIT&E);2022-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3