Review of Deep Learning Using Convolutional Neural Network Model

Author:

Kurniawan Ari1ORCID,Erlangga Erlangga1ORCID,Tanjung Tia1,Ariani Fenty1,Aprilinda Yuthsi1,Endra Robby Yuli1

Affiliation:

1. Universitas Bandar Lampung

Abstract

Machine Learning can be used to process a lot of data and learn patterns from that data to predict the future. One of the most widely used parts of machine learning is Deep Learning. The Deep Learning method that currently provides the most significant results in image recognition is Convolutional Neural Network (CNN). Convolutional Neural Network (CNN) is one of the deep learning algorithms used for computer vision use cases such as image or video classification and detecting objects within images or even image areas. Some research related to the CNN model states that this model has a very good accuracy of 92% but with a fairly small amount of data and the use of epochs, namely 100, resulting in a higher validation error value than the error value in the training process, so that over fitting will occur. Based on several problems in the related research literature, this article aims to identify the weaknesses and shortcomings of Deep Learning algorithms using CNN models that refer to the state of the art, so that they can be used as a reference for further research. The state of the art related to research in the last five years, the Deep Learning algorithm using the CNN model found that (1) The number of epochs can affect the accuracy of the CNN model, (2) 2. The application of architecture can affect the accuracy of the CNN model, (3) the application of the type of layer can affect the accuracy of the CNN model. Based on several problems in the research literature related to the identification of weaknesses and shortcomings of Deep Learning using the CNN model which refers to Table 1. State of the Art summary of literature review research for the last five years, it can be concluded that to increase the accuracy of the CNN model, it is necessary to increase the number of epochs, apply the right architecture according to the problems in the research conducted, and use the type of layer. The hypothesis of this article can be used as a reference for further research related to Deep Learning using the CNN model.

Publisher

Trans Tech Publications Ltd

Reference29 articles.

1. A. Fathurohman, "Machine Learning Untuk Pendidikan: Mengapa Dan Bagaimana," J. Inform. Dan Teknol. Komput., vol. 1, no. 3, p.57–62, 2021.

2. Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing;Rachman;Jurnal Teknologi dan Manajemen Informatika,2021

3. P. A. Nugroho, I. Fenriana, and R. Arijanto, "Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia," Algor, vol. 2, no. 1, p.12–21, 2020.

4. Convolutional Neural Network untuk Kalasifikasi Penggunaan Masker;Rahim;Inspiration: Jurnal Teknologi Informasi dan Komunikasi,2020

5. Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah;Paraijun;KILAT,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3