Affiliation:
1. Tokyo University of Science
2. Tokyo Metropolitan University
Abstract
We show that all of maximal antipodal subgroups in compact Lie groups, which are not necessarily connected, do not change through covering homomorphisms with odd degree.
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Reference6 articles.
1. [1] Chen, B.-Y.: Geometry and topology of maximal antipodal sets and related topics, Rom. J. Math. Comput. Sci., 23, 6–25 (2023).
2. [2] Chen, B.-Y., Nagano, T.: A Riemannian geometric invariant and its applications to a problem of Borel and Serre. Trans. Amer. Math. Soc.
308, 273–297 (1988).
3. [3] Tanaka, M. S., Tasaki, H.: Antipodal sets of symmetric R-spaces. Osaka J. Math. 50, 161–169 (2013).
4. [4] Tanaka, M. S., Tasaki, H.: Maximal antipodal subgroups of the automorphism groups of compact Lie algebras. Springer Proceedings in
Mathematics & Statistics 203, Y. J. Suh et al. (eds.), "Hermitian-Grassmannian Submanifolds", 39–47 (2017).
5. [5] Tanaka, M. S., Tasaki, H.: Maximal antipodal subgroups of some compact classical Lie groups. J. Lie Theory 27, 801–829 (2017).