Author:
Tanaka Makiko Sumi,Tasaki Hiroyuki
Reference6 articles.
1. Chen, B.-Y., Nagano, T.: A Riemannian geometric invariant and its applications to a problem of Borel and Serre. Trans. Am. Math. Soc. 308, 273–297 (1988)
2. Helgason, S.: Differential Geometry, Lie groups, and Symmetric spaces. Academic Press, New York (1978)
3. Ikawa, O.: Canonical forms under certain actions on the classical compact simple Lie groups, In: Suh et al., Y.J. (eds.) ICM Satellite Conference on “Real and Complex Submanifolds”. Springer Proceedings in Mathematics and Statistics, vol. 106, pp. 329–338. Springer, Berlin (2014)
4. Ikawa, O.:
$$\sigma $$
-actions and symmetric triads. Tohoku Math. J (To appear)
5. Tanaka, M.S., Tasaki, H.: Maximal antipodal subgroups of some compact classical Lie groups. J. Lie Theory 27, 801–829 (2017)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献