VR/AR technologies and staff training for mining industry

Author:

Vavenkov М. V.1ORCID

Affiliation:

1. Ernst& Young LLC. – Valuation and Consulting Services

Abstract

Personnel working at mining enterprises must be prepared to overcome professional difficulties and to possess the professional competencies required not only for the implementation of processes, but above all their safety. Modern digital modeling technologies used in mining activities expand the boundaries of practical training not only for future mining engineers, but also for working specialists. As part of the training process, it is important that the simulation of the mining environment be of a high quality almost indistinguishable from the actual environment. In this context, the development of process solutions based on virtual and augmented reality (VR/AR technologies) is most relevant. Process automation in the conditions of large-scale digital transformation laid the foundations for the development of VR/AR in mining industry. Data analysis shows that VR/AR technologies are the major consumer of IT solutions. They are in fact the integrator, or the highest “IT-transformation”, which in practical terms create digital parallel production objects and processes. Further developments in this area may also change some of the existing traditional entities or create new ones, in the training system as well. An example of such an entity, on which the digital future will depend, is the emerging “digital culture”. As such it will be applicable not only in the corporate, industry, but also nationally. Despite the diversity of areas in the development of VR/AR technologies, the maximum effect of their implementation is manifested in the development of special skills of personnel in equipment operation. This clearly relates to the need to ensure the efficiency and reliability of technological operations and processes. The interaction between the consumer and producer of VR/AR solutions together with universities allows a number of problems related to the formation of competencies in the future generation of specialists to be resolved. These include: training of university graduates; creation of specialized courses in educational programs; individual higher educational programs; professional development and retraining courses for specialists in the field of VR/AR technologies in mining; involvement of the academic community representatives in the development of practical tasks based on VR/AR solutions, including researchers of different specializations (geology, geophysics, geotechnics, geoinformatics, aerology, geotechnology, mining machinery and equipment, automation, etc.). Other key areas include the dissemination of the best practices of VR/AR usage in the interests of future customers; creation of a common method to assess the effectiveness of VR/AR projects to determine their investment attractiveness; as well as prediction and creation of future technologies.

Publisher

National University of Science and Technology MISiS

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3