Planning of numerical and physical experiment in simulation of technological processes

Author:

Akberdin A. A.1,Kim A. S.1,Sultangaziev R. B.1

Affiliation:

1. Chemical-Metallurgical Institute named after Zh. Abishev

Abstract

Technological processes are multifactorial. The choice of the most significant of them for the correct analysis of the object of research is an important task. For such a ranking of factors, researchers usually rely on their own experience or the opinions of specialists in this field, assessing their consistency in terms of mathematical criteria. However, when developing a new process, this approach can not be used. In this case, experimental methods of selecting factors are preferable. But the cost, duration, and sometimes impossibility of using this method is obvious. In this paper we use a different approach. It was considered that thermodynamic modeling is an experiment, but only numerical. Therefore, you can apply it to the method of mathematical design of the experiment, allowing for one calculation to take into account the effect on the objective function of more than a dozen factors. The partial dependencies of the process indices obtained in this case make it possible, without setting up physical experiments, to weed out insignificant factors and leave strong ones, estimating them by the methods of mathematical statistics. Another important advantage of its application is the ability to evaluate the dynamics of changes in phase and elementary products of smelting, process feasibility according to convection and temperature conditions with the control of and mathematical criterion of the acquired data. The method also allows the process to be controlled by all the factors involved, which cannot be met in everyday modeling. For demonstration, this approach was applied during the development of the ferroborone production technology by carbothermic method using local raw materials. Thermodynamic modeling was performed using pre-selected factors. They were also used in physical simulation of the process in a high-temperature furnace. The experiment confirmed significance of the factors, which were chosen theoretically. The use of the planning method also reduced the number of numerical experiments in 25, and physical – in 125 times for predefined data.Using this approach, the authors have made it possible to compare the obtained data with the results of physical experiment to develop measures to approximate practical results to equilibrium ones with the use of strongly acting factor.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Organization and Application of Computer Simulation;Deterministic and Stochastic Approaches in Computer Modeling and Simulation;2023-10-06

2. Features of the method for solving the inverse problem for determining the heat capacity and thermal conductivity of phosphate ore raw materials;II INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “TECHNOLOGIES, MATERIALS SCIENCE AND ENGINEERING”;2023

3. Analysis of the Granulometric Composition of the Feedstock Influence on Mechanical Properties of Iron Ore Pellets;Materials Science Forum;2022-02-03

4. The effectiveness of the use of information technologies in the manufacture of parts by molding methods;IOP Conference Series: Materials Science and Engineering;2020-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3