The impact of impurities on the Al–Fe–C system phase composition changes during sintering

Author:

Korosteleva E. N.1ORCID,Knyazeva A. G.1ORCID,Anisimova M. A.1ORCID,Nikolaev I. O.1ORCID

Affiliation:

1. Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences

Abstract

Manufacturing waste can be not only recycled but also utilized as a source of chemical elements and as a component of powder materials. Steel swarf are a complex multicomponent material with a high iron content, while impurities such as carbon can affect the diffusion interaction in the chip and metal powder mixture. In this study, we investigate the diffusion interaction between aluminum and steel swarf using temperature-controlled vacuum sintering. We analyzed the resulting mixture’s microstructure and phase composition, and observed that sintering creates a multiphase structure in which FeAl iron aluminide occupies at least 30 vol. %. Despite the high sintering temperature, we also observed residual aluminum and iron. Incomplete transformation may result form refractory products that inhibit diffusion or impurities that influence the magnitude and direction of the diffusion fluxes. To confirm the impurities’ role in the diffusion interaction kinetics, we developed simulation models of the intermetallic phase growth for a flat and spherical particle embedded in aluminum. The model consider cross-diffusion fluxes in the emerging phase regions and possible effects of impurities on the concentration limit for the new phase’s existence. We derived approximate analytical solutions to analyze the emerging phase growth trends under various model parameters.

Publisher

National University of Science and Technology MISiS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3