The influence of Ni on the composition, structure and properties of Ti-Cr-N coatings

Author:

Chernogor A. V.1ORCID,Blinkov I. V.1ORCID,Belov D. S.1ORCID,Sergevnin V. S.1ORCID,Demirov A. P.1ORCID

Affiliation:

1. National University of Science and Technology MISIS

Abstract

The influence of nickel on the structure and properties of Ti-Cr-N ion-plasma coatings obtained by arc-PVD method has been studied. With a nickel content of up to 11.9 at. %, the coating consists of Cr2N, Ti1 – xCrxN, and metallic Ni. Upon further increase in Ni concentration in the coating, intermetallic compound Ni3Ti is formed. The structure of the coatings was studied using the transmission electron microscopy. The coatings of Ti-Cr-N system are characterized by a columnar structure, in the columns of which Ti1 - xCrxN and Ti1 - yCryN (x > y) sublayers, being several nanometers thick and containing variable concentration of titanium and chromium, as well as Cr2N sublayers of about 25 nm are formed due to the complete solubility of TiN and Cr2N and the planetary rotation of the substrates, resulting in layer-by-layer stacking of the components of the evaporated cathodes. This structure remains intact in coatings of Ti-Cr-N-Ni system with a low nickel concentration (on the order of tenths of at. %). However, upon that, the column size refinement and an increase in biaxial compressive stresses from 6.7 to 9.7 GPa are observed, which results in an increase in hardness from 30 to 42 GPa. The coatings with a high nickel content are characterized by a multilayer architecture with an equiaxed polycrystalline structure of nanograins in layers. As Ni concentration increases, the hardness of the coating decreases to 16.7 GPa, which is associated with an increase in the fraction of relatively soft nickel in the coating and a decrease in macrostresses to -0.6 GPa. Upon that, the wear intensity increases from 3·10-15 to 5·10-15 m3/(N·m). The studied coatings of Ti–Cr–N and Ti–Cr–N–Ni systems are resistant to adhesive and cohesive destruction. With an increase in the nickel content upon measuring scratching, the destruction of the coatings occurs exclusively due to the plastic deformation.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys,Surfaces, Coatings and Films,Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3