Structure and properties of Ta–Si–N coatings obtained by pulsed magnetron sputtering

Author:

Sytchenko A. D.1,Levashov E. A.1,Kiryukhantsev-Korneev Ph. V.1

Affiliation:

1. National University of Science and Technology «MISIS»

Abstract

Pulsed magnetron sputtering of a TaSi2 ceramic target 120 mm in diameter was used to deposit coatings on model silicon substrates at a gas flow rate ratio of Ar/N2 = 1/2 and frequencies of 5, 50, and 350 kHz. The structure and composition of coatings were investigated using scanning electron microscopy, energy dispersive analysis and glow discharge optical emission spectroscopy. The phase composition was determined by X-ray diffraction analysis using CuKα radiation. Mechanical properties were measured by the nanoindentation method using a Nano Hardness Tester equipped with a Berkovich indenter at a load of 4 mN. The heat resistance of coatings was evaluated by isothermal annealing in the air in a muffle furnace at 1200 °С, and oxidation resistance was estimated by the structure and thickness of the oxide layer. The results of structure studies have shown that the coatings are X-ray amorphous and have a dense homogeneous structure. Increasing the frequency from 5 to 350 kHz led to a decrease in the thickness and growth rate of the coatings. Samples deposited at 5 and 50 kHz showed high mechanical performance: hardness at the level of 23–24 GPa, elastic modulus of 211–214 GPa, and elastic recovery of 75–77 %. The coating obtained at the maximum frequency had a hardness of 15 GPa, elastic modulus of 138 GPa, and elastic recovery of 65 %. Annealing led to the formation of protective SiO2, Ta2O5, TaO2 oxide layers. A pronounced crystallization of the TaSi2 phase was observed, which is confirmed by the X-ray diffraction analysis data. Samples deposited at 5 and 50 kHz showed a small oxide layer thickness of 0.9 and 1.1 μm, which indicates the good heat resistance of coatings at 1200 °С.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys,Surfaces, Coatings and Films,Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3