Per-instance Differential Privacy

Author:

Wang Yu-Xiang

Abstract

We consider a refinement of differential privacy --- per instance differential privacy (pDP), which captures the privacy of a specific individual with respect to a fixed data set.  We show that this is a strict generalization of the standard DP and inherits all its desirable properties, e.g.,  composition, invariance to side information and closedness to postprocessing, except that they all hold for every instance separately. We consider a refinement of differential privacy --- per instance differential privacy (pDP), which captures the privacy of a specific individual with respect to a fixed data set.  We show that this is a strict generalization of the standard DP and inherits all its desirable properties, e.g.,  composition, invariance to side information and closedness to postprocessing, except that they all hold for every instance separately.  When the data is drawn from a distribution, we show that per-instance DP implies generalization. Moreover, we provide explicit calculations of the per-instance DP for the output perturbation on a class of smooth learning problems. The result reveals an interesting and intuitive fact that an individual has stronger privacy if he/she has small ``leverage score'' with respect to the data set and if he/she can be predicted more accurately using the leave-one-out data set. Simulation shows several orders-of-magnitude more favorable privacy and utility trade-off when we consider the privacy of only the users in the data set. In a case study on differentially private linear regression, provide a novel analysis of the One-Posterior-Sample (OPS) estimator and show that when the data set is well-conditioned it provides $(\epsilon,\delta)$-pDP for any target individuals and matches the exact lower bound up to a $1+\tilde{O}(n^{-1}\epsilon^{-2})$ multiplicative factor.  We also demonstrate how we can use a ``pDP to DP conversion'' step to design AdaOPS which uses adaptive regularization to achieve the same results with $(\epsilon,\delta)$-DP.

Publisher

Journal of Privacy and Confidentiality

Subject

Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3