Probing the Transition to Dataset-Level Privacy in ML Models Using an Output-Specific and Data-Resolved Privacy Profile

Author:

LeBlond Tyler1ORCID,Munoz Joseph1ORCID,Lu Fred1ORCID,Fuchs Maya1ORCID,Zaresky-Williams Elliot1ORCID,Raff Edward2ORCID,Testa Brian3ORCID

Affiliation:

1. Booz Allen Hamilton, Annapolis Junction, MD, USA

2. Booz Allen Hamilton, Jamesville, NY, USA

3. Air Force Research Laboratory, Rome, NY, USA

Publisher

ACM

Reference35 articles.

1. Deep Learning with Differential Privacy

2. Differential privacy has disparate impact on model accuracy;Bagdasaryan Eugene;Advances in Neural Information Processing Systems,2019

3. DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers

4. Lucas Bourtoule , Varun Chandrasekaran , Christopher A Choquette-choo, Hengrui Jia , Adelin Travers , Baiwu Zhang , David Lie , and Nicolas Papernot . 2021 . Machine Unlearning. In IEEE Symposium of Security and Privacy. Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021. Machine Unlearning. In IEEE Symposium of Security and Privacy.

5. Jonathan Brophy and Daniel Lowd . 2021 . Machine Unlearning for Random Forests . In Proceedings of the 38th International Conference on Machine Learning (Proceedings of Machine Learning Research , Vol. 139), , Marina Meila and Tong Zhang (Eds.). PMLR, 1092-- 1104 . https://proceedings.mlr.press/v139/brophy21a.html Jonathan Brophy and Daniel Lowd. 2021. Machine Unlearning for Random Forests. In Proceedings of the 38th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 139), , Marina Meila and Tong Zhang (Eds.). PMLR, 1092--1104. https://proceedings.mlr.press/v139/brophy21a.html

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SoK: A Review of Differentially Private Linear Models For High-Dimensional Data;2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML);2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3