A relationship between vehicle coastdown performance metrics and fuel efficiency

Author:

Ratamero Leandro de Amorim,Militão Damiano da Silva,De Assis Joaquim Teixeira

Abstract

In contemporary times, societal and legal institutions are earnestly committed to mitigating carbon dioxide (CO2) emissions into the atmosphere, thereby averting global warming. The automotive industry mirrors this commitment, necessitating the development of vehicles characterized by heightened energy efficiency. Such vehicles should boast an extended range while minimizing fuel consumption and CO2 emissions. A pivotal aspect in vehicle development involves the early determination of fuel economy (FE), contingent upon the projected characteristics of the vehicle and its intended market positioning with regard to fuel economy. Over time, diverse methodologies for calculating FE have emerged. These include hybrid regression models incorporating key input variables such as instantaneous vehicle speed and acceleration measurements, theoretical approximation methods derived from the physical properties of engine-vehicle systems, correlations among traffic-related parameters, power-demand models, as well as artificial neural networks and genetic algorithms. These approaches leverage various vehicle input data, encompassing engine speed, torque, fuel flow, intake manifold mean temperature, make of the car, engine style, weight of the car, vehicle type, transmission system type, and other relevant factors. Regrettably, the literature lacks a straightforward and expeditious means of estimating FE for a group of analogous vehicles, a deficiency addressed by the present work. The proposed empirical physical model facilitates FE estimations for a vehicle using a parsimonious set of input information: engine displacement, performance (recovery speed times), and road load data. These inputs are subjected to mathematical parameter adjustments within the empirical model. To validate the efficacy of this approach, the empirical model is applied in a Brazilian case study. The results attest to the success of the method, demonstrating a margin of error within 6% when compared to the official Brazilian government public data for the tested vehicle, particularly in the contexts of city and highway cycles.

Publisher

South Florida Publishing LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference16 articles.

1. MILITÃO, D. da S.; RATAMERO, L. de A.; DE ASSIS, J. T.; DA SILVA, V. F. “Projeto estrutural e construção de um protótipo de Eco-táxi ciclístico concebido para associar atividade física com mobilidade urbana de forma otimizada e sustentável na cidade de Nova Friburgo”. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, [S. l.], v. 21, n. 11, p. 21029–21053, 2023. DOI: 10.55905/oelv21n11-134. Disponível em: https://ojs.observatoriolatinoamericano.com/ojs/index.php/olel/article/view/2216. Acesso em: 24 nov. 2023.

2. MILITÃO, D. da S.; RATAMERO, L. de A.; DE ASSIS, J. T.; DOMINGUEZ, J. S.; BARROS, R. S. “Implementação de um modelo automático de pluviômetro concebido e programado para alerta e fornecimento de dados meteorológicos em comunidades de risco na região serrana do estado do Rio de Janeiro.” Caderno Pedagógico, [S. l.], v. 20, n. 5, p. 1474–1498, 2023b. DOI: 10.54033/cadpedv20n5-024. Disponível em: https://ojs.studiespublicacoes.com.br/ojs/index.php/cadped/article/view/1858. Acesso em: 29 nov. 2023.

3. Mahlia, T., Tohno, S. and Tezuka T., “International experience on incentive program in support of fuel economy standards and labelling for motor vehicle: A comprehensive review,” Renewable and Sustainable Energy Reviews. 25:18–33, 2013.

4. MacKenzie, D. and Heywood, J., “Quantifying efficiency technology improvements in U.S. cars from 1975–2009,” Applied Energy. In Press, 2015.

5. PBE, 2015 Veicular. “CONPET”: Accessed April 14, 2015. Available in: http://pbeveicular.petrobras.com.br/TabelaConsumo.aspx,

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3