A Multi Objective Hybrid Collision-free Optimal Path Finder for Autonomous Robots in Known Static Environments

Author:

Neeraja Kadari,Narsimha Gugulothu

Abstract

The most important field of robotics study is path planning. Path planning problem in general is an NP-complete problem. Though several attempts have been made using A*, PRM, RRT, and RRT* these algorithms explore too many nodes in the state space, not completely captured kinematic constraints, and are not optimal in real-time. In this paper, a Multi-Objective Hybrid Collision- free Optimal Path Finder (MOHC-OPF) is proposed which is an attempt to obtain a near-optimal solution by exploring fewer nodes compare to the above existing methods while considering kinematic constraints aiming to generate optimal drivable paths. The empirical study revealed that the proposed algorithm is capable of detecting static obstacles and finding a collision-free nearest-optimal, smooth and safe path to the destination in a static known environment. Multiple criteria, including path length, collision-free, execution time, and smooth path, are used to determine an optimal path.. The proposed algorithm shows efficiency in finding the shortest path length and execution time decreased in 90% of the experiments.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synchronous Federated Learning based Multi Unmanned Aerial Vehicles for Secure Applications;Scalable Computing: Practice and Experience;2023-09-10

2. A Multi Objective Hybrid Collision-Free Near-Optimal Dynamic Path Planner for Autonomous Robots in Dynamic Environments;Key Digital Trends Shaping the Future of Information and Management Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3