Lacticaseibacillus spp.; Probiotic candidates from Palmyra palm sugar, possess antimicrobial, and anti-biofilm activities against methicillin-resistant Staphylococcus aureus

Author:

Mitsuwan Watcharapong1ORCID,Sornsenee Phoomjai2,Romyasamit Chonticha3ORCID

Affiliation:

1. Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand.

2. Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand.

3. Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.

Abstract

Background and Aim: Probiotics are beneficial microorganisms that play important roles by adhering to the gut and producing antimicrobial substances to inhibit pathogens. The objective of this study was to isolate and characterize the probiotic lactic acid bacteria (LAB) from Palmyra palm sugar, which can produce antimicrobial compounds against methicillin-resistant Staphylococcus aureus (MRSA), a new zoonotic and food-borne pathogens. Materials and Methods: Twenty-six LAB isolates were isolated from 30 Palmyra palm sugar samples. Three selected LAB were further characterized as probiotics. In addition, the antibacterial and anti-biofilm-forming activities of the probiotics' culture supernatants against MRSA and food-borne pathogens were investigated. Finally, the selected probiotics were identified by aligning 16S rRNA sequences. Results: The three confirmed probiotics, WU 0904, WU 2302, and WU 2503, showed strong antibacterial activities against S. aureus, MRSA, Escherichia coli O157:H7, and Listeria monocytogenes, as measured by a broth microdilution assay. Among the LAB isolates, 82.22-86.58%, 91.83-96.06%, and 64.35-74.93% exhibited resistance to low pH, pancreatin treatment, and bile salts, respectively. It was found that 59.46% and 83.33% auto-aggregation was observed in 2 and 24 h, respectively. Moreover, 50.25-57.24% adhesion was detected after the incubation of the bacterial cells to Caco-2 cells. . Biofilm inhibition (82.81-87.24%) was detected after the treatment of MRSA with the culture supernatants, when compared with that to the control. By the alignment of 16S rRNA sequences, the isolate WU 2302 was identified as Lacticaseibacillus spp. with 98.82% homology when compared to the GenBank database. Conclusion: This study indicates that isolated probiotics can produce antimicrobial compounds against MRSA and food-borne pathogens. The obtained results strongly suggest that these probiotics are promising candidates for pharmaceutical products.

Funder

Walailak University

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3