Relaxation dynamics of supramolecular polymer networks with mixed cross-linkers

Author:

Xu Donghua1ORCID,Olsen Bradley D.2,Craig Stephen L.3ORCID

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, People’s Republic of China

2. Department of Chemical Engineering and Center for the Chemistry of Molecularly Optimized Networks, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

3. Department of Chemistry and Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708-0346

Abstract

The linear rheological properties of supramolecular polymer networks formed by mixtures of two different bis-Pd(II) cross-linkers with poly(4-vinylpyridine) in dimethyl sulfoxide are examined. The changes in storage and loss moduli of the networks with mixed cross-linkers are compared to those of samples with a single type of cross-linkers. While the plateau moduli, and presumably network topology, of the networks remain equal regardless of the cross-link distribution, the relaxation time contributed by the faster cross-linkers is increased (by a factor of about 1.5 for the specific samples used in this work) by the presence of the slower cross-linkers, while the reverse influences are not significant. This effect can be explained by the fact that a certain fraction of the elastically effective strands cross-linked with fast cross-linkers is pinned on one end by slow cross-linkers, reducing by half the rate of fast chain relaxation. This effect is anticipated to be general for gels with two well-separated relaxation times.

Funder

Directorate for Mathematical and Physical Sciences

People's Government of Jilin Province

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3