Affiliation:
1. Institute for Chemical Research, Kyoto University 1 , Uji 611-0011, Japan
2. Department of Chemical Engineering, University of Michigan 2 , Ann Arbor, Michigan 48109
Abstract
We examine linear and nonlinear shear and extensional rheological properties using a “micelle-slip-spring model” [T. Sato et al., J. Rheol. 64, 1045–1061 (2020)] that incorporates breakage and rejoining events into the slip-spring model originally developed by Likhtman [Macromolecules 38, 6128–6139 (2005)] for unbreakable polymers. We here employ the Fraenkel potential for main chain springs and slip-springs to address the effect of finite extensibility. Moreover, to improve extensional properties under a strong extensional flow, stress-induced micelle breakage (SIMB) is incorporated into the micelle-slip-spring model. Thus, this model is the first model that includes the entanglement constraint, Rouse modes, finite extensibility, breakage and rejoining events, and stress-induced micelle breakage. Computational expense currently limits the model to micellar solutions with moderate numbers of entanglements (≲7), but for such solutions, nearly quantitative agreement is attained for the start-up of the shearing flow. The model in the extensional flow cannot yet be tested owing to the lack of data for this entanglement level. The transient and steady shear properties predicted by the micelle-slip-spring model for a moderate shear rate region without significant chain stretch are fit well by the Giesekus model but not by the Phan–Thien/Tanner (PTT) model, which is consistent with the ability of the Giesekus model to match experimental shear data. The extensional viscosities obtained by the micelle-slip-spring model with SIMB show thickening followed by thinning, which is in qualitative agreement with experimental trends. Additionally, the extensional rheological properties of the micelle-slip-spring model with or without SIMB are poorly predicted by both the Giesekus and the PTT models using a single nonlinear parameter. Thus, future work should seek a constitutive model able to capture the behavior of the slip-spring model in shear and extensional flows and so provide an accurate, efficient model of micellar solution rheology.
Funder
Japan Society for the Promotion of Science
National Science Foundation
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献