Molecular weight effects on the stress-relaxation behavior of soft thermoplastic elastomer by means of temperature scanning stress relaxation (TSSR)

Author:

Sbrescia Simone1ORCID,Engels Tom2ORCID,Van Ruymbeke Evelyne1ORCID,Seitz Michelle2ORCID

Affiliation:

1. Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

2. DSM Materials Science Center, Urmonderbaan, 6167 RD Geleen, The Netherlands

Abstract

The mechanical properties of multiblock copolymer thermoplastic elastomers (TPEs) are governed by the interplay of different reversible dynamics [e.g., hard block (HB) association and chain entanglements]. Understanding how these physical processes influence the high-temperature deformation behavior is relevant as many TPEs lose toughness with increasing temperature. Increasing molecular weight (Mw) improves their temperature resistance that is attributed to an increase in network connectivity. Indeed, longer chains are characterized by more HBs per chain and by a longer lifetime of the entanglements in the amorphous phase. Both the associating HB and disentanglement dynamics are temperature and rate dependent. To further understand the interconnected role of Mw, temperature and rate dependencies on the mechanical properties, we perform Temperature Scanning Stress Relaxation (TSSR) tests. The method consists of measuring the stress relaxation of the materials as the temperature monotonically increases, allowing us to probe the stress response as the HBs progressively disassociate due to the increase in temperature. The results show that increasing Mw improves the high-temperature relaxation behavior, allowing the material to retain more stress than its low Mw counterpart as the temperature increases. This distinction does not show itself when performing standard small strain dynamic mechanical thermal analyses. Depending on the deformation experienced before the TSSR is performed, different relaxation behaviors are observed illustrating the importance of the current microstructure in determining the mechanical properties. The TSSR approach is well-suited to benchmark the high-temperature stress-bearing properties of network-based polymers whose morphology and, hence, properties are strongly deformation dependent.

Funder

H2020 Programunder DoDyNet REA Grant Agreement

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3