Affiliation:
1. Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter division (BSMA), Université catholique de Louvain, Place Pasteur 1 and Place Croix du Sud 1, Louvain-la-Neuve B-1348, Belgium
2. Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
Abstract
This work focuses on the temperature-dependent structural and rheological characterization of polystyrene- b-poly( n-butyl acrylate)- b-polystyrene triblock copolymers (PS- b-P nBA- b-PS) in the melt and, in particular, on their ability to show a lower disorder-to-order temperature (LDOT). To this aim, copolymers of varying block lengths, but keeping the P nBA block as a major component, were synthesized. Small-angle x-ray scattering revealed that the copolymers with short PS blocks (∼10 kg/mol) approach an LDOT but do not cross it. At room temperature, these copolymers exhibit higher moduli compared to a P nBA homopolymer due to the reinforcing effect of the PS but are flowing at temperatures above the glass transition of the PS. Increasing the PS and P nBA block length, to keep the same PS fraction, induces more profound changes in the structural and viscoelastic behaviors. Such a copolymer crosses the LDOT, leading to a microphase-separated and ordered state at high temperature. Contrary to the copolymers with short PS blocks, the flow regime was not reached, even at temperatures well above the glass transition of the PS. Instead, a low-frequency plateau was observed in rheology, showing the increased lifetime of the microphase-separated PS domains. ABA triblock copolymers exhibiting an LDOT behavior could, thus, be of interest for the design of thermoplastic elastomers or pressure-sensitive adhesives that can resist the flow at high temperatures.
Funder
H2020 Marie Skłodowska-Curie Actions
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献