Rheological investigation on the associative properties of poly(vinyl alcohol) solutions

Author:

Parisi Daniele12,Ditillo Colin D.2,Han Aijie2,Lindberg Seth3,Hamersky Mark W.3,Colby Ralph H.2ORCID

Affiliation:

1. Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

2. Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

3. The Procter & Gamble Company, Cincinnati, Ohio 45061

Abstract

We report intrinsic viscosity and flow curve measurements on a set of five industrial poly(vinyl alcohol) (PVOH) samples, with varying degree of hydrolysis, molecular weight, and concentration in two solvents: water and dimethyl sulfoxide (DMSO). Aqueous poly(vinyl alcohol) solutions exhibit clear features of associative polymers, and the hydroxyl-carbonyl hydrogen bonds seem to dominate polymer chain associations. We propose a “sticky-blob” model, applicable to any associating polymer solution with many stickers inside each correlation blob, which predicts the concentration dependence of the specific viscosity and the chain relaxation time in the entanglement regime. When PVOH polymers are dissolved in DMSO, a strong hydrogen bond acceptor, chain-chain associations are fully prevented for all relevant degrees of hydrolysis. The specific viscosity and the relaxation time of the chain recover the expected concentration dependences for nonassociating flexible polymers in DMSO. The same concentration dependences are exhibited by literature data on 100% hydrolyzed PVOH in water, as the acetate content, dominating interchain associations, is zero. Comparing entangled aqueous and DMSO solutions at the same concentration enables the experimental measure of the time delay due to associations as the ratio between the terminal relaxation time of solutions in water and DMSO. The concentration dependence of such a time delay was also captured by the simple sticky-blob model introduced in this work.

Funder

Proctor & Gamble

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3