1. Dementiy Yu.A. Aktivnoe obuchenie klassifikatora rezhimov raboty ob»ekta s ispol’zovaniem imitacionnoj modeli [Active training classifier operating modes of an object using a simulation model]. In: Sovremennye tendentsii razvitiya tsifrovykh sistem releinoi zashchity i avtomatiki: materialy nauch.-tekhn. konf. molodykh spetsialistov foruma «RELAVEKSPO-2021» [Proc. of Sci. Conf. «Modern trends in the development of digital relay protection and automation systems»]. Cheboksary, Chuvash State University Publ, 2021, pp. 157–162.
2. Dementiy Yu.A., Maslov A.N., Nikolaev K.P. Neirosetevaya klassifikatsiya rezhimov [Neural classification of modes]. In: Sovremennye tendentsii razvitiya tsifrovykh sistem releinoi zashchity i avtomatiki: materialy nauch.-tekhn. konf. molodykh spetsialistov foruma «RELAVEKSPO-2021» [Proc. of Sci. Conf. «Modern trends in the development of digital relay protection and automation systems»]. Cheboksary, Chuvash State University Publ, 2021, pp. 147–152.
3. Haykin S. Neural Networks: A Comprehensive Foundation Subsequent Edition. New York, Prentice Hall PTR, 1998, 842 p.
4. Kosheev M.I., Slavutskii A.L., Slavutskii L.A. Elementarnyi perseptron kak instrument analiza perekhodnykh protsessov [Elementary perceptron as a tool for the transients analyzing]. Vestnik Chuvashskogo Universiteta, 2020, no. 3, pp. 84–93.
5. Koshcheev M.I., Slavutskii A.L., Slavutskii L.A. Prostyye neyrosetevyye algoritmy dlya volnovogo metoda opredeleniya mesta povrezhdeniya elektroseti [Simple neural network algorithms for the wave method of fault location in power networks]. Vestnik Chuvashskogo Universiteta, 2019, no. 3, pp. 110–118.