ELEMENTARY PERCEPTRON AS A TOOL FOR THE TRANSIENTS ANALYZING

Author:

Koshcheev Maksim I.1,Slavutskiy Alexandr L.2,Slavutskii Leonid A.1

Affiliation:

1. I.N. Ulianov Chuvash State University

2. a Separate division of LLC "Unitel Engineering" in Cheboksary

Abstract

The use of elemental perceptron as the simplest artificial feedforward neural network is proposed to evaluate transient processes in electrical networks. Signals with random amplitude, phase, frequency and attenuation were used to test the neural network algorithm as well as the superposition of an aperiodic component, also having a random amplitude and a time-constant. Each signal from the sample was thus determined by six independent random parameters, varying in different ranges. Based on the results of numerical modeling it is shown that such signals are typical for oscillograms of current at short circuits on power lines. It is shown that at the frequency of digitization of signals of 600 Hz in measuring organs on the time interval during industrial frequency it is possible to assess the parameters of a transition process with the accuracy not lower than several percents. The accuracy of the definition for each parameter depending on the range of their variation is analyzed. Transition process parameters that have the greatest impact on neural network training and testing errors are highlighted. Estimates of the possible running speed of the proposed neural network algorithm are made.

Publisher

I.N. Ulianov Chuvash State University

Reference24 articles.

1. Shuin V.A., ed.; Arzhannikov E.A., Lukoyanov V.Yu., Misrikhanov M.Sh. Opredelenie mesta korotkogo zamykaniya na vysokovol'tnykh liniyakh elektroperedachi [Detection of short circuit location on high-voltage power lines]. Moscow, Energoatomizdat Publ., 2003, 272 p.

2. Bychkov A.V., Nikitin A.A. Algoritm dvukh vyborok. Povysheniye tochnosti vychisleniy v perekhodnykh rezhimakh [Two samples algorithm. Increase calculation accuracy in transient modes] In: Tsifrovaya elektrotekhnika: problemy i dostizheniya: sb. nauch. tr. NPP «EKRA» [Digital electrical engineering: problems and achievements]. Cheboksary, 2013, pp. 32–44.

3. Zakon'shek Ya., Slavutskii A.L. Tsifrovoe modelirovanie sovremennykh energosistem v real'nom vremeni [Digital simulation of real-time power systems]. Releinaya zashchita i avtomatizatsiya, 2012, no. 1, pp. 66–72.

4. Kozlov V.N., Bychkov Yu.V., Ermakov K.I. O tochnosti sovremennykh ustroistv OMP [About accuracy of modern devices for network damage location]. Releinaya zashchita i avtomatizatsiya, 2016, no. 1, pp. 42–46.

5. Koshcheev M.I., Slavutskii A.L., Slavutskii L.A. Prostyye neyrosetevyye algoritmy dlya volnovogo metoda opredeleniya mesta povrezhdeniya elektroseti. [Simple neural network algorithms for the wave method of fault location in power networks]. Vestnik Chuvashskogo universiteta, 2019, no. 3, pp. 110–118.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3