Artificial Intelligence in Minimally Invasive Adrenalectomy: Using Deep Learning to Identify the Left Adrenal Vein

Author:

Sengun Berke1ORCID,Iscan Yalin1,Tataroglu Ozbulak Gozde A.2,Kumbasar Nida2,Egriboz Emre2,Sormaz Ismail C.1,Aksakal Nihat1,Deniz Sencer M.2,Haklidir Mehmet2,Tunca Fatih1,Giles Senyurek Yasemin1

Affiliation:

1. Department of General Surgery, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey

2. TUBITAK BILGEM, Kocaeli, Turkey

Abstract

Background: Minimally invasive adrenalectomy is the main surgical treatment option for the resection of adrenal masses. Recognition and ligation of adrenal veins are critical parts of adrenal surgery. The utilization of artificial intelligence and deep learning algorithms to identify anatomic structures during laparoscopic and robot-assisted surgery can be used to provide real-time guidance. Methods: In this experimental feasibility study, intraoperative videos of patients who underwent minimally invasive transabdominal left adrenalectomy procedures between 2011 and 2022 in a tertiary endocrine referral center were retrospectively analyzed and used to develop an artificial intelligence model. Semantic segmentation of the left adrenal vein with deep learning was performed. To train a model, 50 random images per patient were captured during the identification and dissection of the left adrenal vein. A randomly selected 70% of data was used to train models while 15% for testing and 15% for validation with 3 efficient stage-wise feature pyramid networks (ESFPNet). Dice similarity coefficient (DSC) and intersection over union scores were used to evaluate segmentation accuracy. Results: A total of 40 videos were analyzed. Annotation of the left adrenal vein was performed in 2000 images. The segmentation network training on 1400 images was used to identify the left adrenal vein in 300 test images. The mean DSC and sensitivity for the highest scoring efficient stage-wise feature pyramid network B-2 network were 0.77 (±0.16 SD) and 0.82 (±0.15 SD), respectively, while the maximum DSC was 0.93, suggesting a successful prediction of anatomy. Conclusions: Deep learning algorithms can predict the left adrenal vein anatomy with high performance and can potentially be utilized to identify critical anatomy during adrenal surgery and provide real-time guidance in the near future.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3