Affiliation:
1. Siemens Healthineers, Issaquah, WA
2. Northeastern Ohio Medical University, Rootstown
3. Clinical Epidemiology and Biometric Unit, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
Abstract
Objectives
Two-dimensional shear wave elastography (SWE) has been limited in breast lesion characterization due to false-negative results from artifacts. The aim of this study was to evaluate an updated Food and Drug Administration–approved breast 2D-SWE algorithm and compare with the standard algorithm (SA).
Materials and Methods
This prospective, single-center study was approved by our local institutional review board and Health Insurance Portability and Accountability Act compliant. From April 25, 2019 to May 2, 2022, raw shear wave data were saved on patients having screening or diagnostic breast ultrasound on a Siemens Sequoia US. After removing duplicate images and those without biopsy diagnosis or stability over 2 years, there were 298 patients with 394 lesions with biopsy-proven pathology or >2-year follow-up. Raw data were processed using the SA and a new algorithm (NA). Five-millimeter regions of interest were placed in the highest stiffness in the lesion or adjacent 3 mm on the SA. Stiffness values (shear wave speed, max) in this location from both algorithms were recorded. Statistics were calculated for comparing the 2 algorithms.
Results
The mean patient age was 56.3 ± 16.1 years (range, 21–93 years). The mean benign lesion size was 10.7 ± 8.0 mm (range, 2–46 mm), whereas the mean malignant lesion size was 14.9 ± 7.8 mm (range, 4–36 mm). There were 201 benign (>2-year follow-up) and 193 biopsied lesions (65 benign; 128 malignant). The mean maximum stiffness for benign lesions was 2.37 m/s (SD 1.26 m/s) for SA and 3.51 m/s (SD 2.05 m/s) for NA. For malignant lesions, the mean maximum stiffness was 4.73 m/s (SD, 1.71 m/s) for SA and 8.45 m/s (SD, 1.42 m/s) for NA. The area under the receiver operating characteristic curve was 0.87 SA and 0.95 NA when using the optimal cutoff value. Using a threshold value of 5.0 m/s for NA and comparing to SA, the sensitivity increased from 0.45 to 1.00 and the specificity decreased from 0.94 to 0.81; the positive predictive value was 0.72, the negative predictive value was 1.00, and the negative likelihood ratio was 0.00.
Conclusions
Using a new breast SWE algorithm significantly improves the sensitivity of the technique with a small decrease in specificity, virtually eliminating the “soft” cancer artifact. The new 2D-SWE algorithm significantly increases the sensitivity and negative predictive value in characterizing breast lesions as benign or malignant and allows for downgrading all BI-RADS 4 lesions.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献