Downgrading Breast Imaging Reporting and Data System categories in ultrasound using strain elastography and computer-aided diagnosis system: a multicenter, prospective study

Author:

Du Yu1ORCID,Ma Ji1ORCID,Wu Tingting1ORCID,Li Fang1ORCID,Pan Jiazhen2ORCID,Du Liwen3ORCID,Zhang Manqi3ORCID,Diao Xuehong1ORCID,Wu Rong1ORCID

Affiliation:

1. Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine , Shanghai 200080, China

2. Department of Ultrasound, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer, Research & The Affiliated Cancer Hospital of Nanjing Medical University , Nanjing 210009, China

3. Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, China

Abstract

Abstract Objective To determine whether adding elastography strain ratio (SR) and a deep learning based computer-aided diagnosis (CAD) system to breast ultrasound (US) can help reclassify Breast Imaging Reporting and Data System (BI-RADS) 3 and 4a-c categories and avoid unnecessary biopsies. Methods This prospective, multicentre study included 1049 masses (691 benign, 358 malignant) with assigned BI-RADS 3 and 4a-c between 2020 and 2022. CAD results was dichotomized possibly malignant vs. benign. All patients underwent SR and CAD examinations and histopathological findings were the standard of reference. Reduction of unnecessary biopsies (biopsies in benign lesions) and missed malignancies after reclassified (new BI-RADS 3) with SR and CAD were the outcome measures. Results Following the routine conventional breast US assessment, 48.6% (336 of 691 masses) underwent unnecessary biopsies. After reclassifying BI-RADS 4a masses (SR cut-off <2.90, CAD dichotomized possibly benign), 25.62% (177 of 691 masses) underwent an unnecessary biopsies corresponding to a 50.14% (177 vs. 355) reduction of unnecessary biopsies. After reclassification, only 1.72% (9 of 523 masses) malignancies were missed in the new BI-RADS 3 group. Conclusion Adding SR and CAD to clinical practice may show an optimal performance in reclassifying BI-RADS 4a to 3 categories, and 50.14% masses would be benefit by keeping the rate of undetected malignancies with an acceptable value of 1.72%. Advances in knowledge Leveraging the potential of SR in conjunction with CAD holds immense promise in substantially reducing the biopsy frequency associated with BI-RADS 3 and 4A lesions, thereby conferring substantial advantages upon patients encompassed within this cohort.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3