The Quaternary Lidocaine Derivative, QX-314, Exerts Biphasic Effects on Transient Receptor Potential Vanilloid Subtype 1 Channels In Vitro

Author:

Rivera-Acevedo Ricardo E.1,Pless Stephan A.2,Ahern Christopher A.3,Schwarz Stephan K. W.4

Affiliation:

1. Graduate Student.

2. Postdoctoral Research Fellow.

3. Assistant Professor.

4. Assistant Professor and Anesthesia Research Director, St. Paul's Hospital, and Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.

Abstract

Background Transient receptor potential vanilloid subfamily member 1 (TRPV1) channels are important integrators of noxious stimuli with pronounced expression in nociceptive neurons. The experimental local anesthetic, QX-314, a quaternary (i.e., permanently charged) lidocaine derivative, recently has been shown to interact with and permeate these channels to produce nociceptive and sensory blockade in animals in vivo. However, little is known about the specific interactions between QX-314 and TRPV1 channels. Thus, the authors examined the mechanistic basis by which QX-314 acts on TRPV1 channels. Methods The authors conducted an in vitro laboratory study in which they expressed TRPV1 and TRPV4 channels in Xenopus laevis oocytes and recorded cation currents with the two-electrode voltage clamp method. They used confocal microscopy for Ca²⁺ imaging in TRPV1 transient transfected tsA201 cells. Drugs were bath-applied by gravity perfusion. Statistical analyses were performed using Student t test, ANOVA, and post tests as appropriate (P < 0.05). Results QX-314 activated TRPV1 channels at 10, 30, and 60 mM (0.4 ± 0.1%, 3.5 ± 1.3%, and 21.5 ± 6.9% of normalized peak activation, respectively; mean ± SEM; n = 12) but not TRPV4 channels (P < 0.001). Activation by QX-314 was blocked by the TRPV1 antagonist, capsazepine (100 μM). QX-314 (60 mM) activation and blockade by capsazepine was also demonstrated in Ca²⁺ imaging studies on TRPV1-expressing tsA201 cells. At subactivating concentrations (less than 1 mM), QX-314 potently inhibited capsaicin-evoked TRPV1 currents with an IC₅₀ of 8.0 ± 0.6 μM. Conclusions The results of this study show that the quaternary lidocaine derivative QX-314 exerts biphasic effects on TRPV1 channels, inhibiting capsaicin-evoked TRPV1 currents at lower (micromolar) concentrations and activating TRPV1 channels at higher (millimolar) concentrations. These findings provide novel insights into the interactions between QX-314 and TRPV1 and may provide an explanation for the irritant properties of intrathecal QX-314 in mice in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3