Assessment of Cerebral Autoregulation Patterns with Near-infrared Spectroscopy during Pharmacological-induced Pressure Changes

Author:

Moerman Annelies T.1,Vanbiervliet Valerie M.1,Van Wesemael Astrid1,Bouchez Stefaan M.1,Wouters Patrick F.1,De Hert Stefan G.1

Affiliation:

1. From the Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium.

Abstract

Abstract Background: Previous work has demonstrated paradoxical increases in cerebral oxygen saturation (ScO2) as blood pressure decreases and paradoxical decreases in ScO2 as blood pressure increases. It has been suggested that these paradoxical responses indicate a functional cerebral autoregulation mechanism. Accordingly, the authors hypothesized that if this suggestion is correct, paradoxical responses will occur exclusively in patients with intact cerebral autoregulation. Methods: Thirty-four patients undergoing elective cardiac surgery were included. Cerebral autoregulation was assessed with the near-infrared spectroscopy–derived cerebral oximetry index (COx), computed by calculating the Spearman correlation coefficient between mean arterial pressure and ScO2. COx less than 0.30 was previously defined as functional autoregulation. During cardiopulmonary bypass, 20% change in blood pressure was accomplished with the use of nitroprusside for decreasing pressure and phenylephrine for increasing pressure. Effects on COx were assessed. Data were analyzed using two-way ANOVA, Kruskal–Wallis test, and Wilcoxon and Mann–Whitney U test. Results: Sixty-five percent of patients had a baseline COx less than 0.30, indicating functional baseline autoregulation. In 50% of these patients (n = 10), COx became highly negative after vasoactive drug administration (from −0.04 [−0.25 to 0.16] to −0.63 [−0.83 to −0.26] after administration of phenylephrine, and from −0.05 [−0.19 to 0.17] to −0.55 [−0.94 to −0.35] after administration of nitroprusside). A negative COx implies a decrease in ScO2 with increase in pressure and, conversely, an increase in ScO2 with decrease in pressure. Conclusions: In this study, paradoxical changes in ScO2 after pharmacological-induced pressure changes occurred exclusively in patients with intact cerebral autoregulation, corroborating the hypothesis that these paradoxical responses might be attributable to a functional cerebral autoregulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3