Phenylephrine decreases frontal lobe oxygenation at rest but not during moderately intense exercise

Author:

Brassard Patrice1,Seifert Thomas1,Wissenberg Mads1,Jensen Peter M.1,Hansen Christian K.1,Secher Niels H.1

Affiliation:

1. Department of Anesthesia, The Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Abstract

Whether sympathetic activity influences cerebral blood flow (CBF) and oxygenation remains controversial. The influence of sympathetic activity on CBF and oxygenation was evaluated by the effect of phenylephrine on middle cerebral artery (MCA) mean flow velocity ( Vmean) and the near-infrared spectroscopy-derived frontal lobe oxygenation (ScO2) at rest and during exercise. At rest, nine healthy male subjects received bolus injections of phenylephrine (0.1, 0.25, and 0.4 mg), and changes in mean arterial pressure (MAP), MCA Vmean, internal jugular venous O2 saturation (SjvO2), ScO2, and arterial Pco2 (PaCO2) were measured and the cerebral metabolic rate for O2 (CMRO2) was calculated. In randomized order, a bolus of saline or 0.3 mg of phenylephrine was then injected during semisupine cycling, eliciting a low (∼110 beats/min) or a high (∼150 beats/min) heart rate. At rest, MAP and MCA Vmean increased ∼20% ( P < 0.001) and ∼10% ( P < 0.001 for 0.25 mg of phenylephrine and P < 0.05 for 0.4 mg of phenylephrine), respectively. ScO2 then decreased ∼7% ( P < 0.001). Phenylephrine had no effect on SjvO2, PaCO2, or CMRO2. MAP increased after the administration of phenylephrine during low-intensity exercise (∼15%), but this was attenuated (∼10%) during high-intensity exercise ( P < 0.001). The reduction in ScO2 after administration of phenylephrine was attenuated during low-intensity exercise (−5%, P < 0.001) and abolished during high-intensity exercise (−3%, P = not significant), where PaCO2 decreased 7% ( P < 0.05) and CMRO2 increased 17% ( P < 0.05). These results suggest that the administration of phenylephrine reduced ScO2 but that the increased cerebral metabolism needed for moderately intense exercise eliminated that effect.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3