A Neural Circuit from the Paraventricular Thalamus to the Bed Nucleus of the Stria Terminalis for the Regulation of States of Consciousness during Sevoflurane Anesthesia in Mice

Author:

Li Jia-Yan1,Gao Shao-Jie2,Li Ran-Ran3,Wang Wei3,Sun Jia2,Zhang Long-Qing2,Wu Jia-Yi2,Liu Dai-Qiang2,Zhang Pei4,Tian Bo4,Mei Wei2ORCID

Affiliation:

1. Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

2. Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

3. Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

4. Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Abstract

Background The neural circuitry underlying sevoflurane-induced modulation of consciousness is poorly understood. This study hypothesized that the paraventricular thalamus bed nucleus of the stria terminalis pathway plays an important role in regulating states of consciousness during sevoflurane anesthesia. Methods Rabies virus–based transsynaptic tracing techniques were employed to reveal the neural pathway from the paraventricular thalamus to the bed nucleus of the stria terminalis. This study investigated the role of this pathway in sevoflurane anesthesia induction, maintenance, and emergence using chemogenetic and optogenetic methods combined with cortical electroencephalogram recordings. Both male and female mice were used in this study. Results Both γ-aminobutyric acid–mediated and glutamatergic neurons in the bed nucleus of the stria terminalis receive paraventricular thalamus glutamatergic projections. Chemogenetic inhibition of paraventricular thalamus glutamatergic neurons prolonged the sevoflurane anesthesia emergence time (mean ± SD, hM4D–clozapine N-oxide vs. mCherry–clozapine N-oxide, 281 ± 88 vs. 172 ± 48 s, P < 0.001, n = 24) and decreased the induction time (101 ± 32 vs. 136 ± 34 s, P = 0.002, n = 24), as well as the EC5 0 for the loss or recovery of the righting reflex under sevoflurane anesthesia (mean [95% CI] for the concentration at which 50% of the mice lost their righting reflex, 1.16 [1.12 to 1.20] vs. 1.49 [1.46 to 1.53] vol%, P < 0.001, n = 20; and for the concentration at which 50% of the mice recovered their righting reflex, 0.95 [0.86 to 1.03] vs. 1.34 [1.29 to 1.40] vol%, P < 0.001, n = 20). Similar results were observed during suppression of the paraventricular thalamus bed nucleus–stria terminalis pathway. Optogenetic activation of this pathway produced the opposite effects. Additionally, transient stimulation of this pathway efficiently induced behavioral arousal during continuous steady-state general anesthesia with sevoflurane and reduced the depth of anesthesia during sevoflurane-induced burst suppression. Conclusions In mice, axonal projections from the paraventricular thalamic neurons to the bed nucleus of the stria terminalis contribute to regulating states of consciousness during sevoflurane anesthesia. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3