Affiliation:
1. From the Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science (T.-X.W., W.X., W.-M.Q., Z.-L.H.), and the Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences (H.-H.W.), Fudan University, Shanghai, China; the Department of Anesthesiol
Abstract
Abstract
EDITOR’S PERSPECTIVE
What We Already Know about This Topic
The parabrachial nucleus is a brainstem region involved in arousal.
Brain regions involved in arousal regulate anesthetic induction and emergence.
What This Article Tells Us That Is New
Using chemogenetic techniques, activation of parabrachial nucleus glutamatergic neurons prolonged anesthetic induction and hastened emergence in mice. Inhibition of these neurons provided opposite effects.
Modulating the activity of arousal centers may provide an approach to controlling the duration of general anesthesia.
Background
The parabrachial nucleus (PBN), which is a brainstem region containing glutamatergic neurons, is a key arousal nucleus. Injuries to the area often prevent patient reanimation. Some studies suggest that brain regions that control arousal and reanimation are a key part of the anesthesia recovery. Therefore, we hypothesize that the PBN may be involved in regulating emergence from anesthesia.
Methods
We investigated the effects of specific activation or inhibition of PBN glutamatergic neurons on sevoflurane general anesthesia using the chemogenetic “designer receptors exclusively activated by designer drugs” approach. Optogenetic methods combined with polysomnographic recordings were used to explore the effects of transient activation of PBN glutamatergic neuron on sevoflurane anesthesia. Immunohistochemical techniques are employed to reveal the mechanism by which PBN regulated sevoflurane anesthesia.
Results
Chemogenetic activation of PBN glutamatergic neurons by intraperitoneal injections of clozapine-N-oxide decreased emergence time (mean ± SD, control vs. clozapine-N-oxide, 55 ± 24 vs. 15 ± 9 s, P = 0.0002) caused by sevoflurane inhalation and prolonged induction time (70 ± 15 vs. 109 ± 38 s, n = 9, P = 0.012) as well as the ED50 of sevoflurane (1.48 vs. 1.60%, P = 0.0002), which was characterized by a rightward shift of the loss of righting reflex cumulative curve. In contrast, chemogenetic inhibition of PBN glutamatergic neurons slightly increased emergence time (56 ± 26 vs. 87 ± 26 s, n = 8, P = 0.034). Moreover, instantaneous activation of PBN glutamatergic neurons expressing channelrhodopsin-2 during steady-state general anesthesia with sevoflurane produced electroencephalogram evidence of cortical arousal. Immunohistochemical experiments showed that activation of PBN induced excitation of cortical and subcortical arousal nuclei during sevoflurane anesthesia.
Conclusions
Activation of PBN glutamatergic neurons is helpful to accelerate the transition from general anesthesia to an arousal state, which may provide a new strategy in shortening the recovery time after sevoflurane anesthesia.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Reference49 articles.
1. Victory over surgical pain: 170 years ago the era of modern anesthesia began - but what happened in the operating theater in the time before?;Anaesthesist,2016
2. Preventing and managing the impact of anesthesia awareness.;Joint Commission on Accreditation of Healthcare O;Jt Comm Perspect,2004
3. Molecular mechanisms of general anesthesia.;Korean J Anesthesiol,2010
4. Emerging molecular mechanisms of general anesthetic action.;Trends Pharmacol Sci,2005
5. Sleep state switching.;Neuron,2010
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献