Affiliation:
1. From the Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy (T.L., V.C., S.B., T.M., A.Z., A.P.); and the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy (T.L., A.S., T.M., A.Z., A.P.).
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
Acute unilateral pulmonary arterial occlusion causes ventilation–perfusion mismatch of the affected lung area. A diversion of ventilation from nonperfused to perfused lung areas, limiting the increase in dead space, has been described. The hypothesis was that the occlusion of a distal branch of the pulmonary artery would cause local redistribution of ventilation and changes in regional lung densitometry as assessed with quantitative computed tomography.
Methods
In eight healthy, anesthetized pigs (18.5 ± 3.8 kg) ventilated with constant ventilatory settings, respiratory mechanics, arterial blood gases, and quantitative computed tomography scans were recorded at baseline and 30 min after the inflation of the balloon of a pulmonary artery catheter. Regional (left vs. right lung and perfused vs. nonperfused area) quantitative computed tomography was performed.
Results
The balloon always occluded a branch of the left pulmonary artery perfusing approximately 30% of lung tissue. Physiologic dead space increased (0.37 ± 0.17 vs. 0.43 ± 0.17, P = 0.005), causing an increase in Paco2 (39.8 [35.2 to 43.0] vs. 41.8 [37.5 to 47.1] mmHg, P = 0.008) and reduction in pH (7.46 [7.42 to 7.50] vs. 7.42 [7.38 to 7.47], P = 0.008). Respiratory system compliance was reduced (24.4 ± 4.2 vs. 22.8 ± 4.8 ml · cm H2O−1, P = 0.028), and the reduction was more pronounced in the left hemithorax. Quantitative analysis of the nonperfused lung area revealed a significant reduction in lung density (−436 [−490 to −401] vs. −478 [−543 to −474] Hounsfield units, P = 0.016), due to a reduction in lung tissue (90 ± 23 vs. 81 ± 22 g, P < 0.001) and an increase in air volume (70 ± 22 vs. 82 ± 26 ml, P = 0.022).
Conclusions
Regional pulmonary vascular occlusion is associated with a diversion of ventilation from nonperfused to perfused lung areas. This compensatory mechanism effectively limits ventilation perfusion mismatch. Quantitative computed tomography documented acute changes in lung densitometry after pulmonary vascular occlusion. In particular, the nonperfused lung area showed an increase in air volume and reduction in tissue mass, resulting in a decreased lung density.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献