Lung Inhomogeneities and Time Course of Ventilator-induced Mechanical Injuries

Author:

Cressoni Massimo1,Chiurazzi Chiara1,Gotti Miriam1,Amini Martina1,Brioni Matteo1,Algieri Ilaria1,Cammaroto Antonio1,Rovati Cristina1,Massari Dario1,di Castiglione Caterina Bacile1,Nikolla Klodiana1,Montaruli Claudia1,Lazzerini Marco1,Dondossola Daniele1,Colombo Angelo1,Gatti Stefano1,Valerio Vincenza1,Gagliano Nicoletta1,Carlesso Eleonora1,Gattinoni Luciano1

Affiliation:

1. From the Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy (M.C., C.C., M.G., M.A., M.B., I.A., A. Cammaroto, C.R., D.M., C.B.d.C., K.N., C.M., E.C.); Dipartimento di Radiologia, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy (M.L.); Centro di Ricerche

Abstract

Abstract Background: During mechanical ventilation, stress and strain may be locally multiplied in an inhomogeneous lung. The authors investigated whether, in healthy lungs, during high pressure/volume ventilation, injury begins at the interface of naturally inhomogeneous structures as visceral pleura, bronchi, vessels, and alveoli. The authors wished also to characterize the nature of the lesions (collapse vs. consolidation). Methods: Twelve piglets were ventilated with strain greater than 2.5 (tidal volume/end-expiratory lung volume) until whole lung edema developed. At least every 3 h, the authors acquired end-expiratory/end-inspiratory computed tomography scans to identify the site and the number of new lesions. Lung inhomogeneities and recruitability were quantified. Results: The first new densities developed after 8.4 ± 6.3 h (mean ± SD), and their number increased exponentially up to 15 ± 12 h. Afterward, they merged into full lung edema. A median of 61% (interquartile range, 57 to 76) of the lesions appeared in subpleural regions, 19% (interquartile range, 11 to 23) were peribronchial, and 19% (interquartile range, 6 to 25) were parenchymal (P < 0.0001). All the new densities were fully recruitable. Lung elastance and gas exchange deteriorated significantly after 18 ± 11 h, whereas lung edema developed after 20 ± 11 h. Conclusions: Most of the computed tomography scan new densities developed in nonhomogeneous lung regions. The damage in this model was primarily located in the interstitial space, causing alveolar collapse and consequent high recruitability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3