Pulmonary inflammation decreases with ultra-protective ventilation in experimental ARDS under VV-ECMO: a positron emission tomography study

Author:

Deniel Guillaume,Dhelft François,Lancelot Sophie,Orkisz Maciej,Roux Emmanuel,Mouton William,Benzerdjeb Nazim,Richard Jean-Christophe,Bitker Laurent

Abstract

BackgroundExperimentally, ultra-protective ventilation (UPV, tidal volumes [VT] < 4 mL.kg−1) strategies in conjunction with veno-venous extracorporeal membrane oxygenation (VV-ECMO) are associated with lesser ventilator-induced lung injuries (VILI) during acute respiratory distress syndrome (ARDS). However, whether these strategies reduce lung inflammation more effectively than protective ventilation (PV) remains unclear. We aimed to demonstrate that a UPV strategy decreases acute lung inflammation in comparison with PV in an experimental swine model of ARDS.MethodsARDS was induced by tracheal instillation of chlorhydric acid in sedated and paralyzed animals under mechanical ventilation. Animals were randomized to receive either UPV (VT 1 mL.kg−1, positive end-expiration pressure [PEEP] set to obtain plateau pressure between 20 and 25 cmH2O and respiratory rate [RR] at 5 min−1 under VV-ECMO) or PV (VT 6 mL.kg−1, PEEP set to obtain plateau pressure between 28 and 30 cmH2O and RR at 25 min−1) during 4 h. After 4 h, a positron emission tomography with [11C](R)-PK11195 (ligand to TSPO-bearing macrophages) injection was realized, coupled with quantitative computerized tomography (CT). Pharmacokinetic multicompartment models were used to quantify regional [11C](R)-PK11195 lung uptake. [11C](R)-PK11195 lung uptake and CT-derived respiratory variables were studied regionally across eight lung regions distributed along the antero-posterior axis.ResultsFive pigs were randomized to each study group. Arterial O2 partial pressure to inspired O2 fraction were not significantly different between study groups after experimental ARDS induction (75 [68–80] mmHg in a PV group vs. 87 [69–133] mmHg in a UPV group, p = 0.20). Compared to PV animals, UPV animals exhibited a significant decrease in the regional non-aerated compartment in the posterior lung levels, in mechanical power, and in regional dynamic strain and no statistical difference in tidal hyperinflation after 4 h. UPV animals had a significantly lower [11C](R)-PK11195 uptake, compared to PV animals (non-displaceable binding potential 0.35 [IQR, 0.20–0.59] in UPV animals and 1.01 [IQR, 0.75–1.59] in PV animals, p = 0.01). Regional [11C](R)-PK11195 uptake was independently associated with the interaction of regional tidal hyperinflation and regional lung compliance.ConclusionIn an experimental model of ARDS, 4 h of UPV strategy significantly decreased lung inflammation, in relation to the control of VT-derived determinants of VILI.

Publisher

Frontiers Media SA

Reference50 articles.

1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome;Brower,2000

2. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation;Dreyfuss;Am Rev Respir Dis,1993

3. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies;Grasselli;Intensive Care Med,2023

4. Barotrauma in coronavirus disease 2019 patients undergoing invasive mechanical Ventilation: a systematic literature review*;Belletti;Crit Care Med,2022

5. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome;Terragni;Am J Respir Crit Care Med,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3