Microvascular Autoregulation in Skeletal Muscle Using Near-Infrared Spectroscopy and Derivation of Optimal Mean Arterial Pressure in the ICU: Pilot Study and Comparison With Cerebral Near-Infrared Spectroscopy

Author:

Mirsajadi Amirali1,Erickson Dustin2,Alias Soumya2,Froese Logan13,Singh Sainbhi Amanjyot1,Gomez Alwyn45,Majumdar Raju2,Herath Isuru1,Wilson Maggie2,Zarychanski Ryan26,Zeiler Frederick A.13457,Mendelson Asher A.128,

Affiliation:

1. Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.

2. Section of Critical Care Medicine, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada.

3. Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

4. Division of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada.

5. Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.

6. Department of Medical Oncology and Hematology, University of Manitoba/CancerCare Manitoba, Winnipeg, MB, Canada.

7. Pan Am Clinic Foundation, Winnipeg, MB, Canada.

8. Department of Physiology, University of Manitoba, Winnipeg, MB, Canada.

Abstract

IMPORTANCE: Microvascular autoregulation (MA) maintains adequate tissue perfusion over a range of arterial blood pressure (ABP) and is frequently impaired in critical illness. MA has been studied in the brain to derive personalized hemodynamic targets after brain injury. The ability to measure MA in other organs is not known, which may inform individualized management during shock. OBJECTIVES: This study determines the feasibility of measuring MA in skeletal muscle using near-infrared spectroscopy (NIRS) as a marker of tissue perfusion, the derivation of optimal mean arterial pressure (MAPopt), and comparison with indices from the brain. DESIGN: Prospective observational study. SETTING: Medical and surgical ICU in a tertiary academic hospital. PARTICIPANTS: Adult critically ill patients requiring vasoactive support on the first day of ICU admission. MAIN OUTCOMES AND MEASURES: Fifteen critically ill patients were enrolled. NIRS was applied simultaneously to skeletal muscle (brachioradialis) and brain (frontal cortex) while ABP was measured continuously via invasive catheter. MA correlation indices were calculated between ABP and NIRS from skeletal muscle total hemoglobin (MVx), muscle tissue saturation index (MOx), brain total hemoglobin (THx), and brain tissue saturation index (COx). Curve fitting algorithms derive the MAP with the lowest correlation index value, which is the MAPopt. RESULTS: MAPopt values were successfully calculated for each correlation index for all patients and were frequently (77%) above 65 mm Hg. For all correlation indices, median time was substantially above impaired MA threshold (24.5–34.9%) and below target MAPopt (9.0–78.6%). Muscle and brain MAPopt show moderate correlation (MVx–THx r = 0.76, p < 0.001; MOx–COx r = 0.69, p = 0.005), with a median difference of –1.27 mm Hg (–9.85 to –0.18 mm Hg) and 0.05 mm Hg (–7.05 to 2.68 mm Hg). CONCLUSIONS AND RELEVANCE: This study demonstrates, for the first time, the feasibility of calculating MA indices and MAPopt in skeletal muscle using NIRS. Future studies should explore the association between impaired skeletal muscle MA, ICU outcomes, and organ-specific differences in MA and MAPopt thresholds.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3