Neurophysiological Refinement of Subthalamic Nucleus Targeting

Author:

Sterio Djordje1,Zonenshayn Martin12,Mogilner Alon Y.1,Rezai Ali R.1,Kiprovski Kiril2,Kelly Patrick J.1,Beric Aleksandar1

Affiliation:

1. Departments of Neurosurgery, New York University School of Medicine, New York, New York

2. Departments of Neurology, New York University School of Medicine, New York, New York

Abstract

ABSTRACT OBJECTIVE Advances in image-guided stereotactic surgery, microelectrode recording techniques, and stimulation technology have been the driving forces behind a resurgence in the use of functional neurosurgery for the treatment of movement disorders. Despite the dramatic effects of deep brain stimulation (DBS) techniques in ameliorating the symptoms of Parkinson's disease, many critical questions related to the targeting, effects, and mechanisms of action of DBS remain unanswered. In this report, we describe the methods used to localize the subthalamic nucleus (STN) and we present the characteristics of encountered cells. METHODS Twenty-six patients with idiopathic Parkinson's disease underwent simultaneous, bilateral, microelectrode-refined, DBS electrode implantation into the STN. Direct and indirect magnetic resonance imaging-based anatomic targeting was used. Cellular activity was analyzed for various neurophysiological parameters, including firing rates and interspike intervals. Physiological targeting confirmation was obtained by performing macrostimulation through the final DBS electrode. RESULTS The average microelectrode recording time for each trajectory was 20 minutes, with a mean of 5.2 trajectories/patient. Typical trajectories passed through the anterior thalamus, zona incerta/fields of Forel, STN, and substantia nigra-pars reticulata. Each structure exhibited a characteristic firing pattern. In particular, recordings from the STN exhibited an increase in background activity and an irregular firing pattern, with a mean rate of 47 Hz. The mean cell density was 5.6 cells/mm, with an average maximal trajectory length of 5.3 mm. Macrostimulation via the DBS electrode yielded mean sensory and motor thresholds of 4.2 and 5.7 V, respectively. CONCLUSION The principal objectives of microelectrode recording refinement of anatomic targeting are precise identification of the borders of the STN and thus determination of its maximal length. Microelectrode recording also allows identification of the longest and most lateral segment of the STN, which is our preferred target for STN DBS electrode implantation. Macrostimulation via the final DBS electrode is then used primarily to establish the side effect profile for postoperative stimulation. Microelectrode recording is a helpful targeting adjunct that will continue to facilitate our understanding of basal ganglion physiological features.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3