Deep learning based markerless motion tracking as a clinical tool for movement disorders: Utility, feasibility and early experience

Author:

Tien Rex N.,Tekriwal Anand,Calame Dylan J.,Platt Jonathan P.,Baker Sunderland,Seeberger Lauren C.,Kern Drew S.,Person Abigail L.,Ojemann Steven G.,Thompson John A.,Kramer Daniel R.

Abstract

Clinical assessments of movement disorders currently rely on the administration of rating scales, which, while clinimetrically validated and reliable, depend on clinicians’ subjective analyses, resulting in interrater differences. Intraoperative microelectrode recording for deep brain stimulation targeting similarly relies on clinicians’ subjective evaluations of movement-related neural activity. Digital motion tracking can improve the diagnosis, assessment, and treatment of movement disorders by generating objective, standardized measures of patients’ kinematics. Motion tracking with concurrent neural recording also enables motor neuroscience studies to elucidate the neurophysiology underlying movements. Despite these promises, motion tracking has seen limited adoption in clinical settings due to the drawbacks of conventional motion tracking systems and practical limitations associated with clinical settings. However, recent advances in deep learning based computer vision algorithms have made accurate, robust markerless motion tracking viable in any setting where digital video can be captured. Here, we review and discuss the potential clinical applications and technical limitations of deep learning based markerless motion tracking methods with a focus on DeepLabCut (DLC), an open-source software package that has been extensively applied in animal neuroscience research. We first provide a general overview of DLC, discuss its present usage, and describe the advantages that DLC confers over other motion tracking methods for clinical use. We then present our preliminary results from three ongoing studies that demonstrate the use of DLC for 1) movement disorder patient assessment and diagnosis, 2) intraoperative motor mapping for deep brain stimulation targeting and 3) intraoperative neural and kinematic recording for basic human motor neuroscience.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3