Isoform-selective Effects of Isoflurane on Voltage-gated Na+ Channels

Author:

OuYang Wei1,Hemmings Hugh C.2

Affiliation:

1. * Research Associate, Department of Anesthesiology,

2. † Professor and Vice Chair of Research, Departments of Anesthesiology and Pharmacology, Weill Cornell Medical College.

Abstract

Abstract Background: Voltage-gated Na+ channels modulate membrane excitability in excitable tissues. Inhibition of Na+ channels has been implicated in the effects of volatile anesthetics on both nervous and peripheral excitable tissues. The authors investigated isoform-selective effects of isoflurane on the major Na+ channel isoforms expressed in excitable tissues. Methods: Rat Nav1.2, Nav1.4, or Nav1.5 α subunits heterologously expressed in Chinese hamster ovary cells were analyzed by whole cell voltage clamp recording. The effects of isoflurane on Na+ current activation, inactivation, and recovery from inactivation were analyzed. Results: The cardiac isoform Nav1.5 activated at more negative potentials (peak INa at −30 mV) than the neuronal Nav1.2 (0 mV) or skeletal muscle Nav1.4 (−10 mV) isoforms. Isoflurane reversibly inhibited all three isoforms in a concentration- and voltage-dependent manner at clinical concentrations (IC50 = 0.70, 0.61, and 0.45 mm, respectively, for Nav1.2, Nav1.4, and Nav1.5 from a physiologic holding potential of −70 mV). Inhibition was greater from a holding potential of −70 mV than from −100 mV, especially for Nav1.4 and Nav1.5. Isoflurane enhanced inactivation of all three isoforms due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation. Inhibition of Nav1.4 and Nav1.5 by isoflurane was attributed primarily to enhanced inactivation, whereas inhibition of Nav1.2, which had a more positive V1/2 of inactivation, was due primarily to tonic block. Conclusions: Two principal mechanisms contribute to Na+ channel inhibition by isoflurane: enhanced inactivation due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation (Nav1.5 ≈ Nav1.4 > Nav1.2) and tonic block (Nav1.2 > Nav1.4 ≈ Nav1.5). These novel mechanistic differences observed between isoforms suggest a potential pharmacologic basis for discrimination between Na+ channel isoforms to enhance anesthetic specificity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference44 articles.

1. Inhaled anesthetics and immobility: Mechanisms, mysteries, and minimum alveolar anesthetic concentration.;Anesth Analg,2003

2. Emerging mechanisms of general anesthetic action.;Trends Pharmacol Sci,2005

3. Molecular and cellular mechanisms of general anaesthesia.;Nature,1994

4. Inhibition of presynaptic sodium channels by halothane.;Anesthesiology,1998

5. Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals.;Mol Pharmacol,2003

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3