Inhibition of Presynaptic Sodium Channels by Halothane

Author:

Ratnakumari Lingamaneni,Hemmings Hugh C.

Abstract

Background Recent electrophysiologic studies indicate that clinical concentrations of volatile general anesthetic agents inhibit central nervous system sodium (Na+) channels. In this study, the biochemical effects of halothane on Na+ channel function were determined using rat brain synaptosomes (pinched-off nerve terminals) to assess the role of presynaptic Na+ channels in anesthetic effects. Methods Synaptosomes from adult rat cerebral cortex were used to determine the effects of halothane on veratridine-evoked Na+ channel-dependent Na+ influx (using 22Na+), changes in intrasynaptosomal [Na+] (using ion-specific spectrofluorometry), and neurotoxin interactions with specific receptor sites of the Na+ channel (by radioligand binding). The potential physiologic and functional significance of these effects was determined by measuring the effects of halothane on veratridine-evoked Na+ channel-dependent glutamate release (using enzyme-coupled spectrofluorometry). Results Halothane inhibited veratridine-evoked 22Na+ influx (IC50 = 1.1 mM) and changes in intrasynaptosomal [Na+] (concentration for 50% inhibition [IC50] = 0.97 mM), and it specifically antagonized [3H]batrachotoxinin-A 20-alpha-benzoate binding to receptor site two of the Na+ channel (IC50 = 0.53 mM). Scatchard and kinetic analysis revealed an allosteric competitive mechanism for inhibition of toxin binding. Halothane inhibited veratridine-evoked glutamate release from synaptosomes with comparable potency (IC50 = 0.67 mM). Conclusions Halothane significantly inhibited Na+ channel-mediated Na influx, increases in intrasynaptosomal [Na+] and glutamate release, and competed with neurotoxin binding to site two of the Na+ channel in synaptosomes at concentrations within its clinical range (minimum alveolar concentration, 1-2). These findings support a role for presynaptic Na+ channels as a molecular target for general anesthetic effects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3