Role of Megalin in Endocytosis of Advanced Glycation End Products: Implications for a Novel Protein Binding to Both Megalin and Advanced Glycation End Products

Author:

Saito Akihiko,Nagai Ryoji,Tanuma Atsuhito,Hama Hitomi,Cho Kenji,Takeda Tetsuro,Yoshida Yutaka,Toda Tosifusa,Shimizu Fujio,Horiuchi Seikoh,Gejyo Fumitake

Abstract

ABSTRACT. Advanced glycation end products (AGE) are filtered by glomeruli and reabsorbed and metabolized by proximal tubule cells (PTC). In renal failure, decreased renal AGE metabolism likely accounts for the accumulation in serum that is related to uremic complications. In diabetes, AGE generation is increased, and the handling mechanisms in PTC are likely associated with the pathogenesis of tubulointerstitial injury. It is therefore important to clarify the mechanisms of the AGE metabolism to develop a strategy for removing AGE in uremia and to elucidate the pathogenesis of diabetic nephropathy. To this end, this study focused on the molecular analysis of megalin, a multi-ligand endocytic receptor, in PTC. AGE uptake analysis was performed using the rat yolk sac-derived L2 cell line system established for the analysis of megalin’s endocytic functions. The cells mediated specific internalization and degradation of AGE, which were significantly blocked by anti-megalin IgG, indicating that megalin is involved in the cellular processes. However, cell surface AGE-binding assays and ligand blot analysis revealed no evidence that megalin is a direct AGE receptor. Affinity chromatography and ligand blot analysis originally revealed that 200-kD and 400-kD proteins in the cells bind to AGE and the 200-kD protein to megalin in a Ca2+-dependent manner. The binding of megalin with the 200-kD protein was suppressed by receptor-associated protein (RAP), a ligand for megalin. In conclusion, megalin functions for endocytosis of AGE via an indirect mechanism. L2 cells express novel AGE-binding proteins, one of which may interact with megalin. E-mail: akisaito@med.niigata-u.ac.jp

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3