Guanylyl Cyclase A in Both Renal Proximal Tubular and Vascular Endothelial Cells Protects the Kidney against Acute Injury in Rodent Experimental Endotoxemia Models

Author:

Kitamura Hiroaki1,Nakano Daisuke1,Sawanobori Yoshiharu1,Asaga Takehiko1,Yokoi Hideki1,Yanagita Motoko1,Mukoyama Masashi1,Tokudome Takeshi1,Kangawa Kenji1,Shirakami Gotaro1,Nishiyama Akira1

Affiliation:

1. From the Department of Anesthesiology (H.K., Y.S., T.A., G.S.); Department of Pharmacology (D.N., A.N.), Kagawa University, Kagawa; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto (J.N., H.Y., M.Y.); Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto (M.M.); and Department of Biochemistry, National Cerebral and Cardiovascular

Abstract

Abstract What We Already Know about This Topic What This Article Tells Us That Is New Background Natriuretic peptides are used, based on empirical observations, in intensive care units as antioliguric treatments. We hypothesized that natriuretic peptides prevent lipopolysaccharide-induced oliguria by activating guanylyl cyclase A, a receptor for natriuretic peptides, in proximal tubules and endothelial cells. Methods Normal Sprague-Dawley rats and mice lacking guanylyl cyclase A in either endothelial cells or proximal tubular cells were challenged with lipopolysaccharide and assessed for oliguria and intratubular flow rate by intravital imaging with multiphoton microscopy. Results Recombinant atrial natriuretic peptide efficiently improved urine volume without changing blood pressure after lipopolysaccharide challenge in rats (urine volume at 4 h, lipopolysaccharide: 0.6 ± 0.3 ml · kg−1 · h−1; lipopolysaccharide + fluid resuscitation: 4.6 ± 2.0 ml · kg−1 · h−1; lipopolysaccharide + fluid resuscitation + atrial natriuretic peptide: 9.0 ± 4.8 ml · kg−1 · h−1; mean ± SD; n = 5 per group). Lipopolysaccharide decreased glomerular filtration rate and slowed intraproximal tubular flow rate, as measured by in vivo imaging. Fluid resuscitation restored glomerular filtration rate but not tubular flow rate. Adding atrial natriuretic peptide to fluid resuscitation improved both glomerular filtration rate and tubular flow rate. Mice lacking guanylyl cyclase A in either proximal tubules or endothelium demonstrated less improvement of tubular flow rate when treated with atrial natriuretic peptide, compared with control mice. Deletion of endothelial, but not proximal tubular, guanylyl cyclase A augmented the reduction of glomerular filtration rate by lipopolysaccharide. Conclusions Both endogenous and exogenous natriuretic peptides prevent lipopolysaccharide-induced oliguria by activating guanylyl cyclase A in proximal tubules and endothelial cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3