Predicting Intensive Care Delirium with Machine Learning: Model Development and External Validation

Author:

Gong Kirby D.1ORCID,Lu Ryan2,Bergamaschi Teya S.3,Sanyal Akaash4,Guo Joanna5,Kim Han B.6,Nguyen Hieu T.7,Greenstein Joseph L.8,Winslow Raimond L.9,Stevens Robert D.10ORCID

Affiliation:

1. 1Johns Hopkins University School of Medicine, Baltimore, Maryland.

2. 2Northwestern University, Evanston, Illinois.

3. 3Massachusetts Institute of Technology, Cambridge, Massachusetts.

4. 4Johns Hopkins University, Baltimore, Maryland.

5. 5Johns Hopkins University, Baltimore, Maryland.

6. 6Johns Hopkins University School of Medicine, Baltimore, Maryland.

7. 7Johns Hopkins University School of Medicine, Baltimore, Maryland.

8. 8Whiting School of Engineering at Johns Hopkins University, Baltimore, Maryland.

9. 9Whiting School of Engineering at Johns Hopkins University, Baltimore, Maryland.

10. 10Johns Hopkins University School of Medicine, Baltimore, Maryland.

Abstract

Background Delirium poses significant risks to patients, but countermeasures can be taken to mitigate negative outcomes. Accurately forecasting delirium in intensive care unit (ICU) patients could guide proactive intervention. Our primary objective was to predict ICU delirium by applying machine learning to clinical and physiologic data routinely collected in electronic health records. Methods Two prediction models were trained and tested using a multicenter database (years of data collection 2014 to 2015), and externally validated on two single-center databases (2001 to 2012 and 2008 to 2019). The primary outcome variable was delirium defined as a positive Confusion Assessment Method for the ICU screen, or an Intensive Care Delirium Screening Checklist of 4 or greater. The first model, named “24-hour model,” used data from the 24 h after ICU admission to predict delirium any time afterward. The second model designated “dynamic model,” predicted the onset of delirium up to 12 h in advance. Model performance was compared with a widely cited reference model. Results For the 24-h model, delirium was identified in 2,536 of 18,305 (13.9%), 768 of 5,299 (14.5%), and 5,955 of 36,194 (11.9%) of patient stays, respectively, in the development sample and two validation samples. For the 12-h lead time dynamic model, delirium was identified in 3,791 of 22,234 (17.0%), 994 of 6,166 (16.1%), and 5,955 of 28,440 (20.9%) patient stays, respectively. Mean area under the receiver operating characteristics curve (AUC) (95% CI) for the first 24-h model was 0.785 (0.769 to 0.801), significantly higher than the modified reference model with AUC of 0.730 (0.704 to 0.757). The dynamic model had a mean AUC of 0.845 (0.831 to 0.859) when predicting delirium 12 h in advance. Calibration was similar in both models (mean Brier Score [95% CI] 0.102 [0.097 to 0.108] and 0.111 [0.106 to 0.116]). Model discrimination and calibration were maintained when tested on the validation datasets. Conclusions Machine learning models trained with routinely collected electronic health record data accurately predict ICU delirium, supporting dynamic time-sensitive forecasting. Editor’s Perspective What We Already Know about This Topic What This Manuscript Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3