Short-term vital parameter forecasting in the intensive care unit: A benchmark study leveraging data from patients after cardiothoracic surgery

Author:

Hinrichs NilsORCID,Roeschl Tobias,Lanmueller Pia,Balzer Felix,Eickhoff Carsten,O’Brien BenjaminORCID,Falk Volkmar,Meyer Alexander

Abstract

Patients in an Intensive Care Unit (ICU) are closely and continuously monitored, and many machine learning (ML) solutions have been proposed to predict specific outcomes like death, bleeding, or organ failure. Forecasting of vital parameters is a more general approach to ML-based patient monitoring, but the literature on its feasibility and robust benchmarks of achievable accuracy are scarce. We implemented five univariate statistical models (the naïve model, the Theta method, exponential smoothing, the autoregressive integrated moving average model, and an autoregressive single-layer neural network), two univariate neural networks (N-BEATS and N-HiTS), and two multivariate neural networks designed for sequential data (a recurrent neural network with gated recurrent unit, GRU, and a Transformer network) to produce forecasts for six vital parameters recorded at five-minute intervals during intensive care monitoring. Vital parameters were the diastolic, systolic, and mean arterial blood pressure, central venous pressure, peripheral oxygen saturation (measured by non-invasive pulse oximetry) and heart rate, and forecasts were made for 5 through 120 minutes into the future. Patients used in this study recovered from cardiothoracic surgery in an ICU. The patient cohort used for model development (n = 22,348) and internal testing (n = 2,483) originated from a heart center in Germany, while a patient sub-set from the eICU collaborative research database, an American multicenter ICU cohort, was used for external testing (n = 7,477). The GRU was the predominant method in this study. Uni- and multivariate neural network models proved to be superior to univariate statistical models across vital parameters and forecast horizons, and their advantage steadily became more pronounced for increasing forecast horizons. With this study, we established an extensive set of benchmarks for forecast performance in the ICU. Our findings suggest that supplying physicians with short-term forecasts of vital parameters in the ICU is feasible, and that multivariate neural networks are most suited for the task due to their ability to learn patterns across thousands of patients.

Funder

Berlin Institute for the Foundations of Learning and Data

Berlin Institute of Health

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3