Author:
Cox Jake,Wilkinson Daniel James,Atherton Philip James,Smith Kenneth
Abstract
Purpose of review
Dietary proteins are broken down into peptides across the gastrointestinal tract, with skeletal muscle being a primary deposition site for amino acids in the form of incorporation into, for example, metabolic and structural proteins. It follows that key research questions remain as to the role of amino acid bioavailability, of which protein digestibility and splanchnic sequestration (absorption and utilization) of amino acids are determining factors, impact upon muscle protein synthesis (MPS) in clinical states.
Recent findings
Elevated splanchnic amino acid uptake has been implicated in anabolic resistance (i.e. attenuated anabolic responses to protein intake) observed in ageing, though it is unclear whether this limits MPS. The novel ‘dual stable isotope tracer technique’ offers a promising, minimally invasive approach to quantify the digestion of any protein source(s). Current work is focused on the validation of this technique against established methods, with scope to apply this to clinical and elderly populations to help inform mechanistic and interventional insights.
Summary
Considerations should be made for all facets of protein quality; digestibility of the protein, absorption/utilization and subsequent peripheral bioavailability of amino acids, and resultant stimulation of MPS. Stable isotope tracer techniques offer a minimally invasive approach to achieve this, with wide-ranging clinical application.
Publisher
Ovid Technologies (Wolters Kluwer Health)