Effects of Volatile Anesthetic Agents on In Situ Vascular Smooth Muscle Transmembrane Potential in Resistance- and Capacitance-regulating Blood Vessels

Author:

Yamazaki Mitsuaki,Stekiel Thomas A.,Bosnjak Zeljko J.,Kampine John P.,Stekiel William J.

Abstract

Introduction This study was designed to compare the inhibitory effect of inhaled volatile anesthetic agents on in situ sympathetic neural versus nonneural regulation of vascular smooth muscle transmembrane potentials as correlates of vascular smooth muscle tone in resistance- and capacitance-regulating blood vessels. Methods Vascular smooth muscle transmembrane potentials were measured in situ with glass microelectrodes in neurally intact, small (200-300 m OD) mesenteric arteries and veins of rats before, during, and after inhaled halothane, isoflurane, or sevoflurane (0.5 or 1.0 minimum alveolar concentration [MAC]). Such transmembrane potentials and their anesthetically induced changes were compared, respectively, with those measured in similar vessel preparations after local sympathetic neural denervation with 6-hydroxydopamine. Results In neurally intact vessels, transmembrane potentials (in millivolts, mean +/- SD) before inhalation of the anesthetic agent were -39 +/- 2.8 (artery) and -43 +/- 4.6 (vein). At 1.0 MAC, halothane, isoflurane, and sevoflurane induced respective hyperpolarizations (in millivolts, mean +/- SD) of 9 +/- 3.1, 6 +/- 2.7, and 9 +/- 4.0 in arteries and 6 +/- 4.4, 2.8 +/- 3.0, and 8.7 +/- 5.6 in veins. Sympathetic denervation significantly attenuated these hyperpolarizations (except for venous response to isoflurane). At 0.5 MAC, transmembrane potential responses to all three volatile anesthetic agents were small and not consistently significant in either the intact or denervated vessels. Conclusions In resistance-regulating arteries in situ, inhaled halothane, isoflurane, and sevoflurane (1.0 MAC) attenuate both sympathetic neural and nonneural regulation of vascular smooth muscle transmembrane potentials (and tone). In capacitance-regulating veins in situ, sevoflurane (1.0 MAC) also attenuates both regulatory mechanisms, whereas halothane and isoflurane primarily attenuate nonneural mechanisms. At 0.5 MAC, none of these agents significantly affected either mode of regulation of vascular smooth muscle transmembrane potentials in arteries or veins.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3