Conformational State-dependent Effects of Halothane on Cardiac Na sup + Current

Author:

Weigt Henry U.,Rehmert Georg C.,Bosnjak Zeljko J.,Kwok Wai-Meng

Abstract

Background The Na+ channel is voltage gated and characterized by three distinct states: closed, open, and inactivated. To identify the effects of halothane on the cardiac Na+ current (I(Na)) at various membrane potentials, the effects of 1.2 mM halothane at different holding potentials (V(H)) on I(Na) were examined in single, enzymatically isolated guinea pig ventricular myocytes. Methods The I(Na) was recorded using the whole-cell configuration of the patch-clamp technique. Currents were generated from resting V(H)s of -110, -80, or -65 mV. State-dependent block was characterized by monitoring frequency dependence, tonic block, and removal of inactivation by veratridine. Results Halothane produced significant (P < 0.05) V(H)-dependent depressions of peak I(Na) (mean +/- SEM): 24.4 +/- 4.1% (V(H) = -110 mV), 42.1 +/- 3.4% (V(H) = -80 mV), and 75.2 +/- 1.5% (V(H) = -65 mV). Recovery from inactivation was significantly increased when cells were held at -80 mV (control, tau = 6.0 +/- 0.3 ms; halothane, tau = 7.1 +/- 0.4 ms), but not at -110 mV. When using a V(H) of -80 mV, halothane exhibited a use-dependent block, with block of I(Na) increasing from 8.6 +/- 1.4% to 30.7 +/- 3.5% at test pulse rates of 2 and 11 Hz, respectively. Use-dependent inhibition was not apparent at V(H) of -110 mV. When inactivation of I(Na) was removed by exposure to 100 microM veratridine, no significant difference was observed in the depressant effect of halothane at both V(H)s: 26.6 +/- 4.5% (V(H) = -80 mV) and 26.4 +/- 5.6% (V(H) = -110 mV). Conclusions The present findings indicate that the depressant action of halothane on cardiac I(Na) depends on the conformational state of the channel. As more channels are in the inactivated state, the more potent is the effect of halothane. Removal of channel inactivation by veratridine abolished the dependence of the halothane effect on V(H), but depression of the current was still evident. These results indicate a complex interaction between halothane and the various conformational states of the Na+ channel.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference23 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3