Isoform-dependent Effects of Halothane in Human Skinned Striated Fibers

Author:

Tavernier Benoit M.,Haddad Elie,Adnet Pascal J.,Etchrivi Toussaint S.,Lacroix Dominique,Reyford Hugo

Abstract

Background Reports of the effects of halothane on isoform contractile proteins of striated muscles are conflicting. To determine whether halothane affects cardiac and skeletal contractile proteins differently, the authors examined the effects of two doses of halothane (0.44 and 1.26 mM, equivalent to 0.75 and 2.25 vol%, respectively) on the Ca++ sensitivity and maximal force in human skinned cardiac, type I (slow twitch), and type II (fast twitch) skeletal muscle fibers. Methods Left ventricular muscle strips and skeletal muscle biopsy specimens were obtained from eight and ten patients undergoing cardiac and orthopedic surgery, respectively. Sarcolemma and sarcoplasmic reticulum were destroyed with ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid plus Brij 58. Ca++ sensitivity was studied by observing the isometric tension developed by skinned fibers challenged with increasing concentrations of Ca++. Muscle fiber type was determined in each skeletal fiber by the difference in strontium-induced tension measurements. Results Halothane shifted the Ca++ tension curves toward higher Ca++ concentrations and increased the Ca++ concentrations for half-maximal activation in both cardiac and type I skeletal muscle fibers (from 1.96 microM and 1.06 microM under control conditions to 2.92 microM and 1.71 microM in presence of 0.75 vol% halothane, respectively) without changing the slope of this relationship (Hill coefficient). In contrast, no significant effect was observed in type II fibers. Halothane also decreased the maximal activated tension in the three groups of fibers with a lesser effect in type II fibers. Conclusions Halothane decreases Ca++ sensitivity and maximal force in human skinned cardiac and type I fibers at 20 degrees C. It is concluded that the negative inotropic effects of halothane depend on contractile proteins isoforms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3