Differential Effects of Sevoflurane, Isoflurane, and Halothane on Ca (2+) Release from the Sarcoplasmic Reticulum of Skeletal Muscle

Author:

Kunst Gudrun,Graf Bernhard M.,Schreiner Rupert,Martin Eike,Fink Rainer H. A.

Abstract

Background Although malignant hyperthermia after application of sevoflurane has been reported, little is known about its action on intracellular calcium homeostasis of skeletal muscle. The authors compared the effect of sevoflurane with that of isoflurane and halothane on Ca2+ release of mammalian sarcoplasmic reticulum and applied a novel method to quantify Ca2+ turnover in permeabilized skeletal muscle fibers. Methods Liquid sevoflurane, isoflurane, and halothane at 0.6 mM, 3.5 mM, and 7.6 mm were diluted either in weakly calcium buffered solutions with no added Ca2+ (to monitor Ca2+ release) or in strongly Ca2+ buffered solutions with [Ca2+] values between 3 nM and 24.9 microm for [Ca+]-force relations. Measurements were taken on single saponin skinned muscle fiber preparations of BALB/c mice. Individual [Ca2+]force relations were characterized by the Ca2+ concentration at half-maximal force that indicates the sensitivity of the contractile proteins and by the steepness. Each force transient was transformed directly into a Ca2+ transient with respect to the individual [Ca2+]-force relation of the fiber. Results At 0.6 mM, single force transients induced by sevoflurane were lower compared with equimolar concentrations of isoflurane and halothane (P < 0.05). Similarly, calculated peak Ca2+ transients of sevoflurane were lower than those induced by equimolar halothane (P < 0.05). The Ca2+ concentrations at half maximal force were decreased after the addition of sevoflurane, isoflurane, and halothane in a concentration-dependent manner (P < 0.05). Conclusion Whereas sevoflurane, isoflurane, and halothane similarly increase the Ca2+ sensitivity of the contractile apparatus in skeletal muscle fibers, 0.6 mM sevoflurane induces smaller Ca2+ releases from the sarcoplasmic reticulum than does equimolar halothane.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference31 articles.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3