Effect of N -methyl-d-aspartate Receptor ε1Subunit Gene Disruption of the Action of General Anesthetic Drugs in Mice

Author:

Sato Yuki1,Kobayashi Eiji2,Murayama Takanori3,Mishina Masayoshi4,Seo Norimasa5

Affiliation:

1. Staff Anesthesiologist, Department of Anesthesiology, and Staff Scientist, Division of Organ Replacement Research, Center for Molecular Medicine.

2. Professor and Chairman, Division of Organ Replacement Research and Animal Resource Project, Center for Molecular Medicine.

3. Assistant Professor.

4. Professor, Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

5. Professor, Department of Anesthesiology, Jichi Medical School, Tochigi, Japan.

Abstract

Background Recent molecular strategies demonstrated that the N-methyl-d-aspartate (NMDA) receptor is a major target site of anesthetic agents. In a previous article, the authors showed that knocking out the NMDA receptor epsilon1 subunit gene markedly reduced the hypnotic effect of ketamine in mice. In the current study, the authors examined the in vivo contribution of the NMDA receptor epsilon1 subunit to the action of other anesthetic drugs. Methods The authors determined the anesthetic effects of nitrous oxide on sevoflurane potency in NMDA receptor epsilon1 subunit knockout mice compared with those in wild-type mice. They then tested the hypnotic effect of gamma-aminobutyric acid-mediated agents, such as propofol, pentobarbital, diazepam, and midazolam, in knockout mice and wild-type mice. Results The anesthetic action of sevoflurane itself was unaffected by the abrogation of the NMDA receptor epsilon1 subunit. Adding nitrous oxide reduced the required concentration of sevoflurane to induce anesthesia in wild-type mice, whereas this sparing effect was diminished in knockout mice. Furthermore, propofol, pentobarbital, diazepam, and midazolam also had markedly attenuated effects in knockout mice. Conclusions Although it has been demonstrated that knocking out the expression of receptors may induce changes in the composition of the subunits, the network circuitry, or both, the current findings show consistently that the NMDA receptor epsilon1 subunit mediates nitrous oxide but not sevoflurane anesthesia. Furthermore, the attenuated anesthetic impact of propofol, pentobarbital, diazepam, and midazolam as well as ketamine in knockout mice suggests that the NMDA receptor epsilon1 subunit could be indirectly involved in the hypnotic action of these drugs in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3