Nefopam, a Nonsedative Benzoxazocine Analgesic, Selectively Reduces the Shivering Threshold in Unanesthetized Subjects

Author:

Alfonsi Pascal1,Adam Frederic1,Passard Andrea1,Guignard Bruno1,Sessler Daniel I.2,Chauvin Marcel3

Affiliation:

1. Attending Anesthesiologist.

2. Associate Dean of Research, Director Outcomes Research™ Institute, Distinguished University Research Chair, Lolita and Samuel Weakley Professor of Anesthesiology and Pharmacology, University of Louisville.

3. Professor and Chair, Department of Anesthesia, Hôpital Ambroise Paré, Assistance Publique-Hopitaux de Paris.

Abstract

Background The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering. Methods Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34 degrees C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response. Results Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9 degrees C. microg-1. ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0 degrees C. microg-1. ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3 degrees C. microg-1. ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4 degrees C (P < 0.001) without any discernible effect on the sweating or vasoconstriction thresholds. Conclusions Most drugs with thermoregulatory actions-including anesthetics, sedatives, and opioids-synchronously reduce the vasoconstriction and shivering thresholds. However, nefopam reduced only the shivering threshold. This pattern has not previously been reported for a centrally acting drug. That pharmacologic modulations of vasoconstriction and shivering can be separated is of clinical and physiologic interest.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference54 articles.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neuropathic pain: Mechanisms and therapeutic strategies;Frontiers in Cell and Developmental Biology;2023-01-16

2. A regioselective, convergent, and additive-free approach for the synthesis of pyrido[1,4]oxazocines;New Journal of Chemistry;2023

3. Role of hypothermia;Essentials of Evidence-Based Practice of Neuroanesthesia and Neurocritical Care;2022

4.

The Antiallodynic Effect of Nefopam on Vincristine-Induced Neuropathy in Mice

;Journal of Pain Research;2020-02

5. Effects of Anaesthesia on Thermoregulation;Personalized Anaesthesia;2019-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3