Liposomal Bupivacaine

Author:

Mowat Jeffrey J.,Mok Miranda J.,MacLeod Bernard A.,Madden Thomas D.

Abstract

Background There is a clinical requirement for longer-acting local anesthetics, particularly for the management of post-operative and chronic pain. In this regard, liposomes have been suggested to represent a potentially useful vehicle for sustained drug release after local administration. In the current study, the authors used a transmembrane pH gradient to efficiently encapsulate bupivacaine within large unilamellar vesicles. They report on the kinetics of drug uptake and release and the duration of nerve blockade. Methods The rate and extent of bupivacaine uptake into large unilamellar vesicles that exhibit a pH gradient (interior acidic) were determined and compared to drug association with control liposomes that did not exhibit a proton gradient. In subsequent studies, researchers examined the kinetics of bupivacaine release from these liposome systems in vitro. Using the guinea pig cutaneous wheal model, the rate of clearance of the liposome carrier was monitored after intradermal administration, using a radiolabelled lipid marker, and the duration of nerve blockade produced by free and liposomal bupivacaine was compared. Results Bupivacaine was rapidly and efficiently accumulated within liposomes that exhibited a pH gradient (interior acidic) with trapping efficiencies of 64-82% of total drug, depending on the initial bupivacaine:phospholipid ratio. Little uptake was seen, however, for control vesicles that did not exhibit a transmembrane proton gradient. Using an in vitro model of drug clearance, liposomally encapsulated bupivacaine was found to be slowly released for a longer period of time compared with either the free drug or bupivacaine associated with control (no pH gradient liposomes). In the guinea pig cutaneous wheal model, more than 85% of the liposomal carrier was found to remain at the site of administration for 2 days. The sustained drug release afforded by liposomes that exhibited a pH gradient resulted in an increase in the duration of nerve blockade of as much as threefold compared with either the free drug or bupivacaine in the presence of control (no pH gradient) liposomes. Recovery of half maximal response (R2.5) after administration of 0.75% free bupivacaine, for example, was approximately 2 h, whereas the same dose of bupivacaine in pH gradient liposomes exhibited a R2.5 of approximately 6.5 h. Conclusions Large unilamellar vesicles that exhibit a pH gradient can efficiently encapsulate bupivacaine and subsequently provide a sustained-release system that greatly increases the duration of neural blockade.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference31 articles.

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3